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Summary

The development of a probabilistic model to predict the extent of pitting corrosion of copper canisters 
is described. The model accounts for not only the stochastic nature of pitting corrosion but also the 
variability and uncertainty in the repository environment and in how it evolves with time. Because of 
the availability of mechanistic information and of suitable input data, the model was developed on the 
assumption of aerobic, saturated conditions in the near field.

The model is based on well-established criteria for pit initiation and propagation. Pit initiation requires 
that the canister surface is passive and that the value of the corrosion potential exceeds that of the 
film breakdown potential. Propagation requires that the corrosion potential exceeds the value of the 
repassivation potential. Values for these two critical potentials, as well as information on the conditions 
under which passivation can be expected, are available in the literature. The environmental parameters 
of interest are the temperature, bentonite pore-water pH, and the pore-water concentrations of chloride, 
sulphate, and bicarbonate ions, which are described by suitable distributions.

The probabilistic model was developed using the commercially available MATLAB software. Various 
classification and regression algorithms were used to determine the active-passive nature of the surface 
and to fit the critical potential data, respectively. A single run, or realization, represents the evolution 
of the pitting behaviour of the canister in an individual deposition hole over the period of interest, 
typically the first 100 years after emplacement. A specific pH, chloride concentration, and temperature-
time profile was sampled for each realization. The concentrations of sulphate and bicarbonate ions are 
solubility-limited and vary with time due to the variation of temperature. At each time step during the 
execution of the code, the classification algorithm is used to determine the nature of the canister surface 
by comparing the modelled environmental conditions to those found experimentally to lead to either 
active or passive behaviour. For passive conditions, the possibility of pit initiation and, in the event of 
initiation, the duration of propagation are determined using the regressed critical potential data. The pit 
depth is estimated using the predicted duration of pitting and an empirical pit growth expression.

The full probabilistic analysis comprises a total of one million realizations, representing an average 
of 165 realizations for each of the approximately 6 000 canisters in the repository. The maximum 
pit depth is predicted to be approximately 1 mm. The overwhelming majority of pits are less than 
100 µm in depth, which corresponds to the corrosion allowance used for localised corrosion of the 
canisters for the SR-Site safety assessment.

Although it is recognized that, depending on the relative rates of saturation and oxygen depletion, 
aerobic, saturated conditions may not exist in the repository, the probabilistic approach developed 
will be useful for assessing localised corrosion under unsaturated, aerobic conditions in the future.
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1	 Introduction

Copper canisters in a planned KBS-3 repository at the Forsmark site in Sweden are expected to be 
subject to general (uniform) corrosion and a limited degree of localised attack (King and Lilja 2014, 
King et al. 2010, SKB 2010). Based on the results of both short-term laboratory experiments and 
longer-term full-scale in situ tests at the Äspö Hard Rock Laboratory, the localised attack is expected 
to take the form of surface roughening rather than discrete pitting corrosion (King et al. 2010). The 
nature of the near-surface environment is expected to result in an active copper surface rather than 
the passive state required for pit initiation and growth.

Although the canister is expected to be exposed to predominantly active conditions, it is nevertheless 
prudent to assess the probability of pitting corrosion. Pitting is an inherently stochastic process 
(Szklarska-Smialowska 2005) which makes a probabilistic approach appropriate (Scully and Hicks 
2012, Scully and Edwards 2013, Scully et al. 2016). In addition, there are other sources of uncer-
tainty and variability to take into account, such as the variability in the canister surface environment 
from one deposition hole to another and uncertainty in the conditions that produce a passive surface.

It is well understood that the repository environment evolves with time and that this evolution impacts 
the nature and time dependence of different corrosion processes (King et al. 2017). Pitting of copper is 
usually associated with aerobic conditions (King et al. 2010), although it has recently been suggested 
that passive Cu2S films susceptible to localised breakdown could form during the long-term anaerobic 
phase (Kong et al. 2017a, b, Macdonald et al. 2016, Mao et al. 2014). Non-uniform wetting of the can-
ister surface during the evolution of the repository saturation may also facilitate the spatial separation 
of anodic and cathodic processes, leading to localised attack. Therefore, for the purposes of assessing 
the possible pitting of copper canisters, the evolution of the repository is characterised by four possible 
conditions:

•	 Aerobic, unsaturated conditions.

•	 Aerobic, saturated conditions.

•	 Anaerobic, unsaturated conditions.

•	 Anaerobic, saturated conditions.

The repository environment will start out aerobic and unsaturated and will eventually become saturated 
and anaerobic. The existence, or not, of either aerobic, saturated or of anaerobic, unsaturated conditions 
will depend on the relative rates of saturation and evolution of the redox conditions.

Here we describe the development of a probabilistic pitting model for aerobic, saturated conditions. 
The aims of the work are to develop the methodology for probabilistic pitting assessments and to apply 
that methodology to this particular set of environmental conditions. In doing so, we acknowledge that 
aerobic, saturated conditions may be unlikely to occur if saturation is slow or O2 consumption is fast, 
but we have chosen these conditions because of the availability of input data for the model. Having 
developed the methodology, the intention is to assess the probability of pitting under the other sets of 
environmental conditions in future studies.

This report describes the development of the probabilistic methodology and its application to the 
assessment of pitting of copper canisters under aerobic, saturated conditions. A brief review of the 
literature on the passivation and pitting of copper in relevant environments is given in Section 2, 
primarily in order to define the nature of the required input data for the model. The required corrosion, 
electrochemical, and environmental input data are summarised in Section 3, including the nature 
of the distribution functions for the probabilistic assessment. During the development of the model, 
the use of various statistical classification and regression techniques were investigated using different 
sets of input data. The outcome of these trials are described in Section 4, along with a definition of 
the final versions of the model and input data used for the probabilistic analysis itself. Various results 
of the probabilistic assessment are presented in Section 5, including the outcome of the complete 
simulations comprising one million individual runs or realizations, as well as the results of limited 
simulations of 100 realizations which are useful for visualising trends in the analyses.
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2	 Background

2.1	 Passivation
Pitting requires that the surface be in the passive condition (Frankel and Sridhar 2008, King and Lilja 
2014). There is a general consensus that the passivation of copper is promoted by increasing pH and/or 
[HCO3

−], while increasing [Cl−] and [SO4
2−] support active dissolution (Cong et al. 2009, Imai et al. 

1996, Qin et al. 2017). Increasing temperature promotes active dissolution (Qin et al. 2017).

While there is no formal definition of what constitutes a passive surface, the distinction between 
active (A) and passive (P) behaviour can be usefully distinguished using cyclic voltammetry (Cong 
et al. 2009, Imai et al. 1996, Qin et al. 2017). Figure 2‑1 shows examples of A and P behaviour for 
copper determined by cyclic voltammetry (Qin et al. 2017). There are, of course, intermediate cases 
with characteristics of both A and P behaviour which represent the border between the two behav-
iours. Thus, the boundary between A and P behaviour is not necessarily well defined and represents 
another source of uncertainty in the analysis.

Figure 2‑1. Examples of active (left) and passive (right) cyclic voltammograms for copper (Qin et al. 2017).
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Passivation of copper can be the result of the formation of both a copper(I) and copper(II) surface 
film. Figure 2‑2 shows the formation of both Cu(I) and Cu(II) species associated with the passivation 
of copper at pH 8.5 in borate buffer in the absence of any other passivating or activating anions 
(Cong et al. 2009). Upon scanning the potential from negative to more-positive values, the onset of 
passivation is associated with the formation of a Cu2O film, but with increasing polarisation a duplex 
Cu2O/Cu(II) film (either CuO or Cu(OH)2) is formed. Thus the degree of passivation also depends on 
potential which, under freely corroding conditions, is determined by the corrosion potential (ECORR) 
which, in turn, is determined in part by the redox conditions.

Qin et al. (2017) conducted a comprehensive survey of the effects of temperature, pH, and of chloride, 
sulphate, and total carbonate concentrations on the A/P behaviour of copper. Figure 2‑3 shows exam-
ples of the effect of different anions as a function of pH and of the overall A/P “maps” that were devel-
oped and which define different regions of activating or passivating environmental conditions. Imai 
et al. (1996) developed similar maps, an example of which is shown in Figure 2‑4. Unlike Qin et al. 
(2017), Imai et al. (1996) did not systematically vary the pH, and did not report the pH of the solutions 
used, which presumably varied with [HCO3

−]. Thus, the increasing tendency towards passivation with 
increasing [HCO3

−] shown in the figure is at least partly the effect of the increase in pH. Imai et al. 
(1996) also studied the effect of dissolved O2 (DO) concentration on passivation, even though the 
potential was controlled and scanned during the cyclic voltammetric measurement. Passivation was 
found to be promoted by higher DO concentrations (Figure 2‑4), which may have resulted from the 
homogenous oxidation of Cu(I) to Cu(II) by dissolved O2 and the resulting enhancement of passivity.

Figure 2‑2. Cyclic voltammograms on copper in borate buffer at pH 5 (active) and pH 8.5 (passive) at room 
temperature, along with the reversible potentials for various copper solid equilibria at pH 8.5 (Cong et al. 2009).
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Figure 2‑3. Examples of the effects of environmental conditions on the A/P behaviour of copper determined 
by cyclic voltammetry (Qin et al. 2017). a) The effect of pH and [Cl-] on the A/P behaviour in 0.01 mol/L SO4

2- 
at 25 °C. b) A/P map showing regions of active and passive behaviour in 0.01 mol/L SO4

2- solution at various 
temperatures.
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2.2	 Pit initiation and growth
Passive surfaces can be subject to localised film breakdown leading to pit initiation and growth. The 
electrochemical consequences of film breakdown and pitting can be seen from the passive cyclic 
voltammogram (CV) in Figure 2‑1. Film breakdown is characterized by the rapid increase in current 
during the forward (anodic-going) potential scan, at a potential (EB) of approximately −0.12 VSCE. The 
breakdown potential EB is typically defined by the intersection of tangents to the passive and rapidly 
rising parts of the CV. With increasing polarisation, the current increases as the newly initiated pit 
propagates. If the potential scan is reversed, the current measured on the reverse scan exceeds that 
on the forward scan (referred to as positive current hysteresis) and is a characteristic of pit growth. 
At some point, however, the current decreases to that measured during the forward scan indicating 
that the propagating pit has ceased to grow and that the surface has repassivated. There are several 
methods for defining the characteristic repassivation potential (ERP), but those commonly used are 
the potential at which the forward and reverse scans cross one another or the potential for a specific 
current density on the reverse scan.

The precise meaning of EB and ERP have been long debated (Thompson and Syrett 1992, Soltis 2015 
and references therein). The breakdown potential is the potential above which stable pits can grow, 
since metastable pitting (pit initiation events, but no growth) are commonly observed at potentials 
more-negative than EB. The repassivation potential is more unequivocally associated with the cessation 
of pitting and has been regarded as the potential necessary to sustain the critical chemistry within the 
pit, as well as the minimum potential for metastable pitting. For this reason, ERP has been proposed as 
a conservative measure of pit initiation for the long-term prediction of localised corrosion (Sridhar and 
Cragnolino 1993).

One of the problems encountered with the use of critical potentials for predicting localised corrosion 
behaviour is that both EB and ERP are found to be dependent on the method used to measure them 
(Soltis 2015). Thus, in addition to the effect of the environmental parameters of interest, EB may also 
be a function of potential scan rate, surface finish, and electrode pre-treatment. The repassivation 
potential can be a function of the pit depth, i.e., the scan rate or the time at which the pit is allowed to 
grow potentiostatically. In addition to these dependences on the measurement method, the value of 
EB especially is variable due to the stochastic nature of pit initiation. Figure 2‑5 shows the cumulative 
distributions of EB and ERP values measured from 21 identical experiments, showing the inherent varia-
tion in the critical potentials in the absence of effects due to different measurement techniques.

Figure 2‑4. Effect of bicarbonate and chloride concentrations on the A/P behaviour of copper in a) deaer-
ated and b) oxic solutions at 30 °C (Imai et al. 1996).
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2.3	 Criteria for pit initiation and propagation
The following criteria for the initiation and growth of pits are used for this study:

1.	 The surface must be passive for pit initiation to be possible.

2.	 Pit initiation occurs if the corrosion potential ECORR exceeds the value of the film breakdown 
potential EB.

3.	 Once a pit has initiated, propagation occurs as long as ECORR exceeds the value of the repassiva-
tion potential ERP.

Given the different interpretations and sources of variability for EB and ERP described above, the choice 
of these criteria has certain implications for the model predictions. The use of the criterion ECORR > EB 
for pit initiation implies that the model predicts the initiation (and subsequent growth) of stable, as 
opposed to metastable, pits. Furthermore, for both pit initiation and repassivation, it is implicitly 
assumed that the EB and ERP data used in the analysis account for the different sources of variability 
described above.

As will be described in more detail below, the values of the two critical potentials and of ECORR are 
time dependent as a result of the evolution of the repository environment. Furthermore, the active 
or passive nature of the canister surface also evolves with time as the environment changes.

Figure 2‑5. Cumulative distribution plots for replicate measurements of the repassivation and breakdown 
potentials of copper in a synthetic drinking water solution at pH 9.5 (based on the data of Cong et al. 2009).
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3	 Input data

The background information described in the previous section provides the basis for the probabilistic 
pitting model and defines the types of input data that are required. The availability of such data is 
described in this section. As described in Section 2.3, pit initiation and stability will be judged based 
on the requirement for passivity (Section 3.1.1) and on the comparison of ECORR (Section 3.1.4) with 
the critical potentials EB and ERP (Section 3.1.2). If pit propagation is possible, the extent of growth 
will be based on empirical pit growth kinetics (Section 3.1.3).

Information is also required about the relevant environmental conditions, including: canister 
temperature (Section 3.2.1), pore-water pH (Section 3.2.2), chloride concentration (Section 3.2.3), 
concentrations of sulphate and bicarbonate (Section 3.2.4), and, in order to estimate the value of ECORR, 
of the dissolved O2 concentration (Section 3.2.5). In addition to the possible time-dependent evolution 
of these parameters, it is also necessary to take into account the uncertainty and their spatial variability 
within the repository.

3.1	 Corrosion and electrochemical data
3.1.1	 Conditions for active or passive behaviour
Although a number of investigators have studied the conditions for the passivation of copper (Cong 
et al. 2009, Imai et al. 1996, King et al. 2010 and references therein), the most extensive study was 
that performed by the University of Western Ontario (UWO) for the Nuclear Waste Management 
Organization, the results of which are summarised by Qin et al. (2017). The database from that study 
was made available by NWMO for the current project. In contrast to the wide range of environmental 
conditions in the UWO study, the passivation studies of Cong et al. (2009) and Imai et al. (1996) were 
limited to a single temperature. In addition, the pH was neither systematically varied nor indicated in 
the study of Imai et al. (1996).

Qin et al. (2017) considered the effects of temperature, pH, and of the concentrations of Cl−, SO4
2−, and 

HCO3
− on the passivation of copper. Cyclic voltammetry was used to distinguish active and passive 

behaviour (Figure 2‑1) resulting in A/P maps of the type shown in Figure 2‑3. A total of 722 voltammo
grams were recorded, of which 458 were categorised as displaying active behaviour and 264 passive 
behaviour. The ranges of environmental parameters considered are given in Table 3‑1. Single salt as 
well as binary and ternary salt mixtures were considered, with the compositions and concentrations 
selected to represent those expected in the bentonite pore water during the early saturated phase in 
the repository. The temperature range was selected to cover the range expected during the thermal 
transient, and the pH was varied from near-neutral to a value sufficiently high to induce passivation 
in a given salt solution.

Table 3‑1. Ranges of environmental parameters considered in the active-passive cyclic voltam-
metry studies of Qin et al. (2017).

System [Cl−] (mol/L) [SO4
2−] (mol/L) [HCO3

−/CO3
2−] (mol/L)

Single salt 0.001–5.0
-

-
0.001–0.1

-
-

Binary salt mixtures 0.001–5.0
-
0.01
0.01
0.1

0.01
0.01
0.001–0.1
-
-

-
0.0001–0.01
-
0.0001–0.01
0.0001–0.0005

Ternary salt mixture 0.1 0.01 0.0001–0.0005

Temperature (°C) 25 – 80

pH 7.0 –12.4
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In summary, the effects of temperature and pH on the passivation of copper were determined for the 
following combinations of anions:

•	 Single ion effects of varying concentrations of Cl− or SO4
2−

•	 Binary mixtures of
–	 Cl− (variable) and SO4

2−

–	 SO4
2− and HCO3

−/CO3
2− (variable)

–	 Cl− and SO4
2− (variable)

–	 Cl− (0.01 mol/L) and HCO3
−/CO3

2− (variable)
–	 Cl− (0.1 mol/L) and HCO3

−/CO3
2− (variable)

•	 A ternary salt mixture of Cl−, SO4
2−, and HCO3

−/CO3
2− (variable)

Either active or passive behaviour was assigned for each of the 722 experiments. Expert judgement was 
used to decide whether the behaviour was A or P in the cases where the shape of the voltammogram 
was not as clearly distinct as the examples shown in Figure 2‑1. Although there is also uncertainty 
associated with the precise position of the A/P boundaries, such as those illustrated in Figure 2‑3(b), 
this source of uncertainty was addressed using the classification methods described in Section 4.3.1.

3.1.2	 Critical potentials
There are a number of sources of critical potentials for copper in relevant environments (King and 
Lilja 2014, King et al. 2010). However, many of these studies were of limited scope with a relatively 
small number of EB and ERP values having been reported. The two most-extensive studies are those 
of Cong et al. (2009) and Qin et al. (2017).

Cong et al. (2009) investigated the pitting of copper in potable water and determined critical potentials 
(as well as conditions for passivity) as a function of pH and Cl−, SO4

2−, and HCO3
−/CO3

2− concentra-
tions. The effect of Cl− – SO4

2− and Cl− – HCO3
−/CO3

2− interactions were considered at pH 8.3 and 9.5. 
The ranges of anion concentration were similar to those used by Qin et al. (2017) (Table 3‑1), except 
for a maximum [Cl−] of 0.5 mol/L. All experiments were conducted at a single temperature of 25 °C 
(room temperature).

Linear regression was used to develop relationships between EB (referred to as EPit by Cong et al.) and 
ERP, namely:

EB = 1.11 + 0.116 · log[OH−] + 0.197 · log[HCO3
−]

− 0.130 · log([SO4
2−] + [Cl−]) VSCE	 (3-1)

and

ERP = 0.073 + 0.0044 · log[OH−] + 0.0782 · log[HCO3
−]

− 0.0593 · log[SO4
2−] VSCE	 (3-2a)

ERP = − 0.0925 + 0.00373 · log[OH−] − 0.0139 · log[HCO3
−]

− 0.0566 · log[Cl−] VSCE	 (3-2b)

for Cl−–SO4
2− and Cl−–HCO3

−/CO3
2− solutions, respectively. It is interesting to note that, whereas 

film breakdown (EB) is a strong function of the environmental conditions, repassivation (ERP) is only 
weakly dependent. The authors cautioned that the applicability of these relationships outside of the 
experimental pH range was uncertain.

As shown in Figure 2‑5, Cong et al. (2009) also determined the variability in EB and ERP as a result 
of the stochastic nature of film breakdown and, to a lesser extent, repassivation. The replicate EB 
measurements exhibit a wider spread of values than the ERP data, with standard deviations of the values 
in the figure of 61 mV and 5.1 mV for EB and ERP, respectively. This variability does not account for 
uncertainty or variability due to differences in the methodology used for the measurements since all 
values were determined using the same technique.
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Qin et al. (2017) also determined EB and ERP values from the subset of cyclic voltammograms that 
exhibited passive behaviour. Of the 264 voltammograms that displayed passivity, a total of 254 EB 
values and 203 ERP values were derived, with not all experiments exhibiting clear breakdown or 
repassivation phenomena. As discussed in Section 4.3.2, various regression techniques were used to 
fit these values to the five experimental parameters. These regression fits were conducted within the 
probabilistic code itself and fits of the types shown in Equations (3‑1) and (3‑2) were not developed 
for these data.

3.1.3	 Pit growth kinetics
If the initiation of a stable pit is predicted, pit growth is assumed to continue until such time that the 
pit repassivates, as indicated by a decrease of ECORR to the value of ERP. The model, therefore, will 
predict a pit growth duration from which an estimate of the depth of penetration can be determined 
using either an empirical pit growth expression or from the depth of general corrosion and a suitable 
pitting factor.

Typically, the rate of pit (depth wise) growth is time-dependent, with the pit depth D at a time t 
given by

D = Atn	 (3-3)

where the value of the time exponent n is < 1 and a value of approximately 0.5 is commonly reported. 
There is some mechanistic basis for a time-dependent pit growth rate, for example, diffusion control or 
limitation by an iR drop down an ever-deepening pit would both be consistent with a value of n < 1.

For the current model, values for the constant A and the time exponent n are taken from the under-
ground corrosion study of Denison and Romanoff (1950). This study involved the burial of copper 
samples (as well as of a range of ferrous materials, lead, and zinc alloys) in a range of soils in the 
United States for periods up to 14 years (Romanoff 1989). These data were used to derive a value for 
the pitting factor in the original study of the corrosion behaviour of copper canisters by the Swedish 
Corrosion Institute (SKBF/KBS 1978). In their analysis, Denison and Romanoff (1950) combined 
results for copper-silicon alloys and for tough-pitch and phosphorus-deoxidized coppers into a single 
database as these materials exhibited similar behaviour. Of the fourteen different soils types to which 
copper samples were exposed, only 6 were described as having fair or good aeration and three of 
these soils were acidic. Data for soils with poor or very poor aeration or for acidic soils are excluded 
here as being unrepresentative of the repository near field during the aerobic phase.

Pit growth expressions were selected from the two of the remaining three soils exhibiting the deepest 
pits; soil #65 (Chino silt loam, pH 8, good aeration) and soil #66 (Mohave fine gravelly loam, pH 8, 
fair aeration) (Table 3‑2). These two soils exhibit different pit growth kinetics. Although the maximum 
pit depth after 14 years was higher for soil #65 than that for soil #66 (406 µm and 257 µm, respectively), 
the short-term rate is higher for soil #66. The constant A represents the pit depth after one year and is 
higher in soil #66 but decreases more rapidly, as indicated by the smaller value of n. The consequence 
for the estimation of pit depth in the probabilistic model is that if the duration of the pitting event is 
relatively short (of the order of a year or so) the use of data for soil #66 will produce the deepest pits, 
whereas the data for soil #65 will produce deeper pits if the growth period is of the order of 5 years or 
greater (Figure 3‑1).

Table 3‑2. Pit growth parameters for copper for selected soils from the study of Denison and 
Romanoff (1950).

Soil designation Soil pH and degree of aeration Constant A 
(µm · yrn)

Time exponent 
(n)

#65 Chino silt loam pH 8, good 89.2 ± 46a 0.57 ± 0.26a

#66 Mohave fine gravelly loam pH 8, fair 188 ± 41a 0.12 ± 0.11a

a The ± is based on the standard error given in the original study and is assumed here to represent one standard deviation 
for a normal distribution.
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An alternative approach to estimating the extent of pit propagation is through the use of a “pitting 
factor”, defined as the ratio of the depth of maximum penetration to the mean depth of corrosion. 
Thus, a pitting factor of one indicates uniform corrosion. Based on observations from large-scale 
in situ canisters tests at the Äspö HRL, the rate of general corrosion under aerobic conditions is of the 
order of 1 µm/yr (Johansson et al. 2019). Various values have been defined for the pitting factor for 
copper canisters (King et al. 2010), ranging from a highly conservative value of 25 to a value of 5 that 
is considered more reasonable and which is adopted here. Thus, for the period of pit propagation, the 
maximum rate of propagation is taken to be 5 µm/yr.

3.1.4	 Corrosion potential
The value of the ECORR is used to determine (a) if pit initiation is possible and (b) whether repassiva-
tion of an actively growing pit occurs. In general, the value of ECORR is expected to be a function 
of a number of environmental variables and to vary with time as the repository environment evolves. 
Detailed reactive-transport models have been developed to predict the evolution of the corrosion 
behaviour and of ECORR of copper canisters under aerobic conditions (King et al. 2008, 2011a, b). 
However, the incorporation of such computational complex calculations within a probabilistic 
model that will be run tens of thousands of times is not feasible and a simpler expression for ECORR 
is required.

King et al. (1995) described a mixed-potential model for copper in O2-containing Cl− solutions that 
was applicable to a wide range of mass-transport conditions. Copper anodically dissolves as Cu(I) 
in the form of CuCl2

− complex ions (with CuCl3
2− species increasingly prevalent at [Cl−] greater than 

approximately 1 mol/L, Puigdomenech and Taxén 2000), supported by the cathodic reduction of O2. 
For the low rates of mass transport characteristic of saturated buffer material, ECORR is a function 
of temperature and of the concentrations of dissolved O2 and Cl− and is given by (King et al. 1995)

.
	 (3-4)

where the various symbols are defined in Table 3‑3. Because of the dependence of ECORR on [O2], 
we also need to define the evolution of the dissolved oxygen concentration in the repository 
(Section 3.2.5).

Figure 3‑1. Time dependence of the pit depth for soils #65 and #66 from Table 3‑2.
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3.1.5	 Applicability of electrochemical and pit growth data
In the absence of electrochemical data measured in the presence of compacted bentonite, parameter 
values determined in bulk solution are used and are implicitly assumed to be valid for the compacted 
system. Compacted bentonite could have a number of effects on the interfacial electrochemical 
behaviour, including:

•	 The exertion of a swelling pressure and the resulting effect on film properties such as the porosity 
and the presence of defects (cracks).

•	 Buffering of the interfacial pH by equilibration with the bentonite pore water.

•	 Possible cathodic limitation on the extent of pit growth and the probability of repassivation.

It is uncertain whether the application of a buffer swelling pressure of up to 10 MPa will have an effect 
on the properties of the film formed on copper. It could be argued that such films will be more compact 
and less porous and, therefore, more protective than similar films formed in bulk solution. However, 
porous corrosion product deposits are formed in confined environments, such as in crevices between 
steam generator tubes and the tube support plate. It is considered unlikely that the presence of swelling 
bentonite would result in more-porous, less-protective surface films, so that the use of data from bulk-
solution studies can be considered to be conservative.

The bentonite itself and accessory minerals such as calcium carbonate in the bentonite will buffer the 
pore-water pH, which is one of the key parameters determining active/passive behaviour. This effect 
of bentonite is accounted for in the current model since the distribution of pH values is selected to 
reflect that in the buffer pore water (see Section 3.2.2).

Saturated bentonite will also limit the mass transport of species towards and away from the canister 
surface, especially the supply of O2 during the aerobic phase. Values for the breakdown and repassi
vation potentials are typically determined potentiodynamically, with the potential controlled by a 
potentiostat. Under these conditions, the apparatus delivers as much current as required by the pitting 
system and there is no cathodic limitation of pit growth. This absence of cathodic limitation during 
the electrochemical measurements will primarily affect the repassivation process, since ERP depends 
to some extent on the extent of pit propagation between the breakdown event and the point on the 
reverse scan at which repassivation occurs. Therefore, it is likely that a pit initiated under conditions 
of cathodic limitation would repassivate at a more-positive potential than a pit initiated potentio
dynamically. Thus, the current analysis will tend to overestimate the duration of the pit growth phase.

The pit growth kinetics in Section 3.1.3 were determined in near-surface aerobic soils described 
as exhibiting fair or good aeration. This description implies that the rate of O2 supply to the buried 
samples was relatively rapid and that the use of the resulting pit growth expressions for a canister 
surrounded by low-permeability compacted buffer is conservative.

Equation (3-4) for the prediction of ECORR does account for the low rates of diffusion of species 
towards and away from the corroding copper surface and was, in part, developed on the basis of 
corrosion potentials measured in compacted buffer. However, the expression is based on the assump-
tion of an active surface. This assumption is valid for 90 % of the cases considered (see below) for 
which the sampled values of T, pH, [Cl−], [HCO3

−], and [SO4
2−] are consistent with active conditions. 

However, for the approximately 10 % of cases in which passivation is predicted, Equation (3-4) will 
tend to predict a value more-negative than the ECORR of a passive surface. As a consequence, film 
breakdown is less likely to be predicted to occur in the model and, where pit initiation does occur, 
repassivation will tend to occur sooner. Thus, the duration of pit growth will be under-estimated in the 
model. However, as shown in Figure 3-1, the pit-growth kinetics tend towards a maximum pit depth 
(especially for soil #66) so that the under-estimation of the duration of the pit-growth phase, while 
non-conservative, should not result in too large an error in the predicted pit depth. Furthermore, the 
under-estimation of the duration of pit growth for passive systems based on the use of Equation (3-4) 
is offset by the over-estimation of the pitting period because of the use of potentials determined in the 
absence of possible cathodic limitations (see discussion above).
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Table 3‑3. Parameter definitions and values for Equation (3-4), from King et al. (1995). The 
electrochemical rate constants are further specified in King et al. (2008).

Symbol Parameter description Value

T Temperature (K) Variable
F Faraday constant 96 487 C/mol
R Gas constant 8.314 J K−1 mol−1

na Number of electrons in the anodic reaction 1
nc Number of electrons in the cathodic reaction 4
Ea

0 Standard potential for the anodic reaction −0.105 VSCE

ka Electrochemical rate constant 3.3 × 10−4 dm4 mol−1 s−1

k−2 Electrochemical rate constant 1.42 × 10−3 dm s−1

DO2 Oxygen diffusion coefficient in solution* 1.7 × 10−5 cm2 s−1

DCuCl2− CuCl2− diffusion coefficient in solution* 5.5 × 10−6 cm2 s−1

* The ratio of the diffusion coefficients of O2 and CuCl2− in Equation (3-4) is assumed to be the same in saturated 
bentonite as in bulk solution.

3.2	 Environmental data
The corrosion behaviour of the canister is determined by the nature of the environment at the canister 
surface and how it evolves with time. For much of the time period of interest here, the pore-water 
composition is largely determined by the type of bentonite used and the associated content of accessory 
minerals. The composition of the ground water is of secondary importance, except for the pore-water 
[Cl−] where the halite content of the bentonite is low and the influence of the ground water will be 
greater. The concentration of anions in the interlayer space in the bentonite will be lower than in the 
external source (ground water) due to osmotic effects (Birgersson and Karnland 2009). Furthermore, 
it is reasonable to assume that the copper surface acts as an external source rather than as a part of the 
interlayer. Therefore, the anion concentrations at the canister surface, as well as the pH, are assumed 
to be those associated with an external source in equilibrium with the bentonite.

3.2.1	 Canister temperature
Canister surface temperatures were calculated for each of the 6 916 deposition holes at the Forsmark 
site using the thermal code described by Hedin (2004). Calculations were performed using thermal 
properties appropriate for saturated buffer and were carried out to a maximum time of 10 000 years. 
For the probabilistic model simulations, temperatures were interpolated using a piecewise cubic 
method from those predicted by the thermal model to correspond to the time increments used for the 
Monte Carlo simulations. For times less than 0.01 years (the earliest output from the thermal model), 
the temperature was assumed to be constant at this initial value.

For each Monte Carlo realization, the 6 916 temperature profiles where sampled using a discrete uni-
form distribution with no consideration of duplicate selections. A representative set of 100 temperature 
profiles generated within the probabilistic model are shown in Figure 3‑2. The use of 100 realizations 
is convenient as the data is not too dense for the purpose of visualization. A discrete temperature profile 
was selected from the total 6 916 deposition holes for each of the one million realizations used for the 
full probabilistic analysis.

The use of thermal properties characteristic of saturated buffer results in lower peak temperatures 
than would be the case for unsaturated buffer. However, the use of lower temperatures is considered 
conservative since lower temperatures promote passivation of copper (Qin et al. 2017) and, hence, 
a higher probability of pit initiation. On the other hand, the thermal calculations were conducted on 
the assumption of the maximum residual power of 1 700 W per canister, and some canisters will have 
a lower thermal loading and will be correspondingly cooler.
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3.2.2	 Pore-water pH
There are relatively few measurements of the pH of bentonite pore water, largely because of the 
difficulty of obtaining a representative sample or of conducting in situ measurements. Therefore, 
the form of the pH distribution for the probabilistic model was defined based on expert judgement, 
informed by the few pH measurements that have been performed and from the results of pore-water 
modelling studies.

The pH in the bentonite will be determined by calcite equilibrium, ion-exchange and acid-base 
reactions with the montmorillonite surface, and the composition of the groundwater. Muurinen and 
Carlsson (2008) measured the pH inside compacted bentonite and the results indicate that the pH 
value is close to that of the external solution, at least at near-neutral conditions.

A triangular distribution of pore-water pH was used, with minimum, peak, and maximum values 
of 7, 7.4, and 10, respectively (Figure 3‑3). The lower value (pH 7) reflects the lowest measured pH 
values at the Forsmark site, while the maximum value (pH 10) covers measurements from bentonite 
porewater (Wanner et al. 1992). The value of pH 10 was measured using a slurry of bentonite soda 
(Na2CO3)-treated bentonite and is considered to be unrepresentative of the pore-water pH in compacted 
commercial bentonite. Nevertheless, it is used here to define the maximum pH value of the triangular 
distribution in order to be conservative since the high pH will tend to promote passivation of the 
surface. The peak value is defined as pH 7.4 in order to (i) reflect a typical value for groundwater and 
(ii) not give the higher pH values too much weight. As part of a sensitivity analysis, the maximum pH 
was lowered to pH 9, with the minimum and peak pH values unchanged.

The triangular distribution was sampled at random for each Monte Carlo realization which for a 
simulation with 1 000 000 realizations, resulted in a distribution shown by the histogram in Figure 3‑4. 
The resulting distribution accurately approximates the desired triangular distribution indicating that 
sufficient samples were taken in the Monte Carlo analysis.

Figure 3‑2. Temperature data for a 100 year simulation with 100 Monte Carlo realizations.
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Figure 3‑3. Defined pore-water pH triangular distribution with minimum 7, peak 7.4 and maximum 10.

Figure 3‑4. Histogram from defined triangular pH distribution for a 1 000 000 realization simulation along 
with the input triangular probability distribution.
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3.2.3	 Chloride concentration
The chloride concentration in the bentonite will be determined by the chloride concentration in the 
groundwater, the initial chloride content in the bentonite, and the degree of saturation. The degree of 
saturation will depend on the temperature and the supply of water. After full saturation and equilibra-
tion, the water in contact with the canister will have the same chloride concentration as the groundwater. 
However, before equilibrium is reached, which can take a considerable time in some deposition holes, 
the chloride concentration can take any value between the initial chloride content and the groundwater 
concentration. The distribution of chloride concentrations is selected based on experimental data from 
the Prototype Repository (Olsson et al. 2013). This distribution should not been seen as representative 
for all deposition holes at Forsmark, but more as an illustration of a single possible distribution. 
However, since the 8-year duration of the Prototype Repository experiment is of the same order as the 
duration of the aerobic phase modelled here, the distribution of bentonite pore-water chloride concentra-
tions is considered to be representative for the period of interest.

A cumulative distribution function (CDF) of the Prototype data is shown in Figure 3‑5 (blue line). 
In order to smooth out the resulting distribution a monotonic, linearly interpolated, CDF was also 
generated (Figure 3‑5, red line). Finally, the linearly interpolated CDF was randomly sampled for 
each Monte Carlo realization. For a simulation with 1 000 000 realizations the resulting histogram 
of Cl− concentrations is shown in Figure 3‑6.

Figure 3‑5. Empirical cumulative distribution function (CDF) of pore-water chloride concentrations generated 
from data from the Prototype experiment (blue) and a linearly interpolated CDF (red).
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3.2.4	 Sulphate and bicarbonate concentrations
The pore-water concentrations of dissolved sulphate and bicarbonate are assumed to be controlled 
by the solubility of the respective solid phases (King et al. 2017, Sena et al. 2010). A number of the 
solubility-controlling solid phases exhibit retrograde solubility. The geochemical software PHREEQC 
version 3.4 was used with the phreeqc.dat thermodynamic database to estimate the equilibrium SO4

2− 
and HCO3

− concentrations. Calcite was used as the carbonate controlling phase, with gypsum, anhy-
drite, basanite, and hemihydrate as possible limiting phases for SO4

2−. The pH was not defined but 
instead was calculated within the PHREEQC simulation. This may result in a discrepancy between 
the pH calculated in the solubility calculations and the sampled pH for each realization. However, any 
such discrepancy is expected to have a relatively minor effect given the overall simplification of the 
pore-water chemistry in the model.

Polynomials were fitted to the PHREEQC predictions to produce expressions for the temperature 
dependence of [SO4

2−] and [HCO3
−]

1.26901382 10 298.15 3.97938117 10 298.15

 7.89962675 10

 4.74084833 10 298.15   2.68766739 10 298.15
 7.73780299 10 298.15  1.13158668 10 298.15 	 (3-5)

and

5.10348861 10 298.15 1.33530950 10 298.15
1.33530950 10 298.15 6.33530950 10 	 (3-6)

and as shown in Figure 3‑7.

When the above polynomials are combined with the temperature profiles from Figure 3‑2 the resulting 
sulphate and bicarbonate profiles were produced (Figure 3‑8). For each temperature profile that was 
generated, the corresponding sulphate and bicarbonate concentration profiles were also generated for 
use in the simulations.

Figure 3‑6. Histogram of chloride concentrations for a 1 000 000 realization simulation.
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Figure 3‑7. Solubility of sulphate and bicarbonate as a function of temperature based on PHREEQC 
version 3.4 calculations using the phreeqc.dat database.

Figure 3‑8. Time-dependent concentrations of sulphate (top) and bicarbonate (bottom) for a Monte Carlo 
simulation with 100 realizations. Results are shown for both linear (left) and log (right) time axes. For times 
less than 10−2 years (the earliest time at which temperatures were calculated using the thermal code), the 
temperature, and hence the anion concentrations, were assumed to be constant at the initial values.
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3.2.5	 Oxygen concentration
The time-dependent dissolved O2 concentration is required to predict the value of ECORR (Equation 3-4). 
The [O2] in Equation (3‑4) refers to the concentration in the bulk environment, not that at the canister 
surface (King et al. 1995). As such, it is taken to be represented by the overall evolution of the redox 
conditions within the repository.

The time-dependence of the O2 concentration was based on expert judgement. An exponential decrease 
in oxygen was assumed

	 (3-7)

where [O2]init is the initial dissolved oxygen concentration assumed to be 2.4 × 10−4 mol/L, equivalent 
to that in an aerated saline pore-water solution at 25 °C (Battino et al. 1983). Complete consumption 
(defined here as 0.1 % remaining) was assumed to occur in between 5 weeks and 5 years. This range 
of times is representative of the estimated times to establish anoxic conditions in different experimental 
studies in granitic rock (Puigdomenech et al. 2001) and in full-scale tests (Giroud et al. 2018). The time 
constant a is thus defined by

�  ln 0.001 / 	 (3-8)

Both log uniform and uniform distributions were considered for a, with lower and upper bounds of 
72.08 a−1 and 1.382 a−1, corresponding to “O2 consumption times” of 5 weeks and 5 years, respectively. 
For the uniform distribution, a is assumed to be uniformly distributed between the lower and upper 
bounds. For the log uniform distribution

10 ~ , 	 (3-9)

α is log uniformly distributed between the log10 of the upper and lower bounds.

Comparison between the log uniform (Figure 3‑9) and uniform distributions (Figure 3‑10) for α indi-
cates that the uniform distribution results in a larger portion of realizations tending towards the lower 
bound of 5 weeks, considered to be more representative of the majority of experimental observations 
than the upper bound of 5 years (Giroud et al. 2018, Puigdomenech et al. 2001). Therefore, a uniform 
distribution was chosen for α for the simulations presented in this report.

We do not attempt to define the duration of the “aerobic phase” during which pitting is possible. The 
duration of any pit-growth event depends on a number of factors, including: (i) the rate of O2 consump-
tion, (ii) the time dependence of ECORR (which in turn depends on the temperature, [O2], and [Cl−]), and 
(iii) the sampled values of EB and ERP. Thus, it is possible that in some realizations pitting will continue 
for longer than 5 years if the rate of O2 consumption is relatively slow and/or if the value of ECORR is 
relatively noble compared with the value of ERP.



SKB TR-20-01	 27

Figure 3‑9. Log uniform a distribution (left) with resulting oxygen consumption times (right) for a 1 000 reali-
zation Monte Carlo simulation.

Figure 3‑10. Uniform alpha distribution (left) with resulting oxygen consumption times (right) for a 1 000 reali-
zation Monte Carlo simulation.
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4	 Implementation of the probabilistic pitting model

4.1	 Structure of the model
The probabilistic model is structured around a series of flow charts that (i) control the overall execution 
of the code (Figure 4‑1), (ii) determine the time-dependent evolution of the environment (Figure 4‑2), 
(iii) determine if pit initiation is possible (Figure 4‑3), and (iv) if a pit does initiate, the extent of pit 
growth (Figure 4‑4).

The following terminology is used to describe the execution of the probabilistic model. A realization 
is the term used to represent a single cycle of the overall control flow chart, typically representing 
an elapsed time of 100 years. A single temperature profile, bentonite pore-water pH and [Cl−], and 
an O2-depletion rate constant are selected for each realization. Thus, each realization represents the 
environmental conditions in a single deposition hole.

A simulation represents a complete probabilistic assessment and comprises between 100 and 
1 000 000 individual realizations. The smaller number of realizations was used to allow results to 
be visually presented and to assist in the identification of trends in the predictions, for example, the 
environmental conditions responsible for passive or active behaviour. The larger number of realizations 
is used to take into account the variability and uncertainty in the environmental conditions within the 
deposition holes and within the repository as a whole. A simulation of 1 000 000 realizations represents 
an average of 145 realizations for each of the 6 916 deposition holes. Multiple realizations for a given 
deposition hole (characterized by a specific temperature profile) account for the variability and uncer
tainty in the pore-water [Cl−] and pH and of the rate of O2 consumption.

The extent to which the variability and uncertainty in the electrochemical (both the active/passive 
behaviour and film breakdown and repassivation) and pit growth data is accounted for in a simulation 
is discussed in Section 4.3.

4.1.1	 Control flow chart
The purpose of the Control flow chart (Figure 4‑1) is to control the overall execution of the code, 
including the time-stepping (except during pit propagation), the calling of other modules (flow charts) 
as needed, and eventually stopping the execution when the realization is over. A single realization 
represents a series of time increments from emplacement through to 100 years (or some other time, 
defined by the user). At the beginning of the realization, a single temperature profile is selected at 
random from the collection of 6 916 profiles, one for each deposition hole. In addition, values of the 
pore-water pH and [Cl−] are selected from the corresponding distributions and remain constant for the 
entire realization. The time dependence of the [O2] evolution is also defined by selecting a value for 
the associated time constant a.
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Figure 4‑1. Control flow chart for the probabilistic pitting model for aerobic, saturated conditions.
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For each time step, the following processes are performed:

•	 Proceed to the Environment module to determine the composition of the aqueous phase and 
temperature.

•	 Determine if the surface is active or passive (performed within the Environment module).
–	 If the surface is in the active condition, this observation, and the corresponding time, are 

documented, the time is incremented, and the above steps are repeated.
–	 If the surface is predicted to be passive, however, we proceed to the Pit Initiation module.

•	 If the surface is passive but the pit initiation criterion is not met, then this observation (and the 
associated time) are documented, the time is incremented, and the above steps are repeated.

•	 If a pit is predicted to initiate, we proceed to the Pit Propagation module.
–	 The extent of pit propagation is estimated based on the period for which ECORR exceeds ERP 

and a suitable pit propagation model (e.g., an empirical pit growth rate or a pitting factor).
–	 Execution remains within the Pit Propagation module until the surface repassivates.

•	 Once a pit has stopped propagating, we return to the Control flow chart and check to see if the pit 
depth equals or exceeds the corrosion allowance.
–	 When incrementing the time following a period of pit propagation, the time increment 

corresponds to the predicted period of pit propagation.
–	 By repeating these steps, we allow for the possibility of another period of pit propagation 

should the various criteria be met.

•	 Execution stops once either the corrosion allowance is exceeded (and the corresponding “failure 
time” is recorded) or the time reaches the maximum value specified for the realization (typically 
100 years).

4.1.2	 Environment flow chart
The two functions of the Environment module (Figure 4‑2) are to define the nature of the aqueous 
phase and to determine whether the surface is active or passive. The canister surface temperature 
profile, pore-water pH and [Cl−], and the O2-consumption time constant were selected in the prior 
Control module.

Figure 4‑2. Environment flow chart for the probabilistic pitting model for aerobic, saturated conditions.

Time and temperature from
Control module

Is the surface
passive?

Y
Proceed to pit

initiation module

N
Return to

Control module

Calculate time-
dependent [SO4

2−],
[HCO3

−] based on T
and corresponding

solubility data

Active/passive
classification

algorithm applied
to selected

[Cl−], [SO4
2−],

[HCO3
−], pH, T



32	 SKB TR-20-01

Each time the Environment module is called, the following steps are performed:

•	 Define the nature of the aqueous phase.
–	 Based on the canister surface temperature for that time step, calculate the [SO4

2−] and [HCO3
−] 

based on Equations (3‑5) and (3‑6), respectively.
•	 Based on the selected T, pH, and [Cl−] and the predicted [SO4

2−] and [HCO3
−], determine whether 

the surface is active or passive based on the data of Qin et al. (2017) and a suitable classification 
algorithm (Section 4.3.1).

•	 If the surface is deemed to be passive, then the possibility of pit initiation will be determined in 
the Pit Initiation module.

•	 If the surface is deemed to be active, then the simulation is returned to the Overall control module.

4.1.3	 Pit Initiation flow chart
The Pit Initiation module (Figure 4‑3) is used to determine whether pit initiation occurs based on the 
criterion that ECORR equals or exceeds the breakdown or pitting potential EB. The following steps are 
involved:

•	 Calculate the [O2] based on the elapsed time and the selected O2-consumption time constant 
(Equation 3‑7).

•	 Calculate the value of ECORR based on the defined T, [Cl−], and the calculated [O2] (Equation 3‑4).
•	 Select a value of EB based on the T, [Cl−], [SO4

2−], [HCO3
−], and pH defined in the Control and 

Environment modules and the regression analysis of experimental EB values.
•	 Determine whether pitting initiates based on the criterion ECORR ≥ EB.
•	 If pit initiation is predicted to occur, proceed to the Pit Propagation module.
•	 If pit initiation is predicted not to occur, return to the overall Control module.

Figure 4‑3. Pit initiation flow chart for the probabilistic pitting model for aerobic, saturated conditions.
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4.1.4	 Pit Propagation flow chart
The Pit Propagation module (Figure 4‑4) is used to determine the extent of pit propagation prior to 
stifling of the pit. The following steps are involved:

•	 Select a value of the repassivation potential ERP based on the T, [Cl−], [SO4
2−], [HCO3

−], and pH 
defined in the Control and Environment modules and the regression analysis of experimental 
ERP values.

•	 Determine if pit growth is possible by comparing the values of ECORR (from the prior Pit Initiation 
stage) and ERP.
–	 This initial step is included as it is possible, depending on the width of the distributions of EB 

and ERP, that the selected value of ERP could be more positive than the selected EB.
–	 If ECORR ≤ ERP, return to the Control module.

•	 If pit propagation is possible (ECORR > ERP), estimate the extent of pit growth during the prescribed 
time step using an appropriate (user-defined) pit growth expression.

•	 Document the extent of pit growth during the time step.
•	 Increment the time and re-calculate the values of ECORR and ERP.
•	 Re-determine whether pit growth is still possible based on the criterion ECORR > ERP.
•	 If pit growth is possible, estimate the incremental pit growth, and repeat the steps above.
•	 If ECORR ≤ ERP, return to the Control module and increment the time based on the total duration 

of pit growth.

Figure 4‑4. Pit propagation flow chart for the probabilistic pitting model for aerobic, saturated conditions.

From Pit
Initiation module

Select initial ERP based
on defined [Cl−], [SO4

2−],
[HCO3

−], pH, and T at
time of pit initiation

based on regression
analysis

 

N

Y

Estimate pit growth
based on ∆t and PF/pit

growth expression  

Select pitting
factor or pit
growth rate
expression 

Document
incremental
pit growth 

Update ECORR

based on [Cl−] and
time-dependent T

and [O2] 

Increment time

ECORR from
Pit Initiation module

(initial time step only) 

Critical
potential

regression
anaysis

Return to
Control module

Is ECORR ≤ ERP?

Update ERP based on
defined [Cl−] and pH and

time-dependent T,
[SO4

2−], and [HCO3
−]

based on regression
analysis



34	 SKB TR-20-01

The Pit Propagation module is responsible for incrementing the time during the period of pit growth 
and takes over this function from the Control module. During this time, the values of ECORR and ERP 
are re-calculated at each time step as the temperature, [O2], [SO4

2−], and [HCO3
−] evolve. As noted 

in Section 3.1.2, however, the experimental ERP of Cong et al. (2009) are only weakly dependent on 
the anion concentrations (Equation 3‑2). Once the pit repassivates, execution returns to the Control 
module and the time is incremented to account for the period of pit growth.

4.2	 Software and hardware
Statistical analysis of the experimental data set was conducted using the base software package 
MathWorks MATLAB with the addition of the Statistics and Machine Learning Toolbox. MathWorks 
MATLAB is a commercial numerical computing tool for mathematical calculations, such as matrix 
manipulations, linear algebra and statistical analysis (among many other applications). The MATLAB 
software and associated toolboxes provide a platform of mathematical calculations based on the well-
accepted mathematical libraries known as LAPACK and other algorithms from the literature. They 
allow users to develop their own calculation programs within this platform. MATLAB has been under 
development since 1984 by MathWorks. It is widely used in industry and academia. It is being actively 
developed and maintained.

Development was completed using MATLAB version R2018b (MathWorks 2018). Built-in MATLAB 
mathematical algorithms were used for most calculations, for example data input, vector operations, 
interpolation, random number generation, data output and data visualization. The statistical methods 
also used built-in functions including creating probability distribution and cumulative distribution 
functions and developing machine learning algorithms for classification and regression.

The software was developed and run on a workstation computer with Intel Xeon processors (total 
of 20 cores) and 192 GB of error catching and correcting (ECC) memory. Wherever possible the code 
was developed to be parallel by design, using built-in MATLAB vector operations and running the 
Monte Carlo (MC) realizations in parallel. When running the largest models (1 million MC realiza-
tions) the simulation can take 10 days, using the 20 cores, and take up to 64 GB of memory. For rapid 
development of the model, smaller simulations can be run in minutes to hours.

4.3	 Model development
The model underwent several stages of development using different classification and regression 
methods, pit growth expressions, and time discretizations. These development steps are described in 
this section, with the final form of the model used for the full probabilistic simulations described in 
Section 4.4.

4.3.1	 Classification methods for the active-passive data
The input data for the determination of active or passive conditions comprises a set of 722 experimental 
measurements as a function of different values of T, pH, [Cl−], [SO4

2−], and [HCO3
−] (Section 3.1.1). 

During the execution of the code, a new set of T, pH, [Cl−], [SO4
2−], and [HCO3

−] values are defined 
at each time step and a method is needed of interpolating the experimental data to determine whether 
the canister surface is active or passive. Since the desired outcome is binary (active or passive), the use 
of classification methods to determine membership within a given group is appropriate.

Three different classification methods were investigated using the Classification Learner application 
within MATLAB:

•	 Unweighted k-nearest neighbour (k-NN) algorithm, using various numbers of nearest neighbours.

•	 Weighted k-NN.

•	 Bootstrap aggregating decision tree (Bagging).
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In addition, verified and non-verified versions of the weighted k-NN and Bagging methods were 
investigated, with the “goodness-of-fit” assessed through the use of confusion matrices. These are 
tables used to describe the accuracy of a classification algorithm. For example, it lists the number 
of false positives and false negatives along with respective true responses.

In order to condition the input data and minimize error due to large deviations in the relative 
magnitude between data (for example, the HCO3

− concentrations are on the order of 10−4 while the 
temperature data are on the order of 101–102), the data were normalized by dividing each value by 
the standard deviation of the respective data set. These normalized data were used to test all three 
classification methods.

The k-NN algorithm is a method used for data classification where k represents the number of nearest 
neighbours used when training on the data. The algorithm calculates the distance between the known 
data (1 through k nearest neighbours) and a given new data point to determine class membership. 
In the localised corrosion model, class membership was defined as either active (A) or passive (P). 
Sensitivity to the number of nearest neighbours was investigated for k values of 1 through 12. In the 
initial trails, an unweighted k-NN method was used in which all k neighbours have an equal influence 
on the membership of the new data point regardless of their proximity. Thus, it is difficult, a priori, 
to define the optimum value of k. If k is too small then there may be too few experimental data points 
to determine membership, especially if the new data point lies close to a “boundary” between A and 
P behaviour. On the other hand, if k is too large, then experimental points determined under quite 
different environmental conditions than those of the new data point may have undue influence over 
the membership classification.

Table 4‑1 summarises the results of preliminary Monte Carlo simulations to determine the effect of the 
number of nearest neighbours k for the unweighted k-NN classification method. Each simulation com-
prised 100 000 realizations and each run consisted of 71 time steps (total of 7.1 million time steps). In 
general, the simulations predict more active behaviour the larger the number of nearest neighbours used 
to determine membership. Thus, not only are ≥ 80 % of the individual time steps classified as active for 
k ≥ 10, but more than half of the realizations predict active conditions for the entire 100-year simula-
tion period with only 2 % predicted to be entirely passive. In contrast, for k ≤ 2, of the order of 80 % 
of the individual time steps and 50 % or more of the entire realizations were predicted to be passive. As 
noted above, however, it is not obvious whether a smaller or larger number of nearest neighbours is 
to be preferred for an unweighted k-NN approach.

Table 4‑1. Effect of number of nearest neighbours (k) on the distribution of active-passive 
conditions for a Monte Carlo simulation of 100 000 realizations using the unweighted k-NN 
classification method.

k = 1 k = 2 k = 4 k = 6 k = 8 k = 10 k = 12

Time steps:
% active 27 8 25 52 75 80 84
% passive 73 83 75 48 25 20 16

Realizations:
% active only 17 4 3 12 15 57 54
% passive only 49 72 12 2 2 2 2
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Because of this concern over the possible undue influence of distant neighbours on deciding member-
ship of the new data point, two additional classification methods were investigated. First, a weighted 
k-NN approach was used in which neighbours closer to the new data point have a greater influence 
in deciding membership than those further away. For the current analysis, a squared inverse weight 
was applied to the distance between neighbours to determine their relative influence. Second, the use 
of a “bagged tree” machine learning algorithm was investigated. Bootstrap aggregating, or bagging, 
is an algorithm used in statistical classification and regression and is designed to reduce variance and 
minimize overfitting. The bagging method generates many training sets from the original data (with 
replacement) and is then used in a decision tree method to apply a classification to each new data set 
and finally averages the result (Breiman 1996). The classification tree, or decision tree, uses properties 
of an observation to move towards decisions about the value of an observation. The building of the 
classification tree is done many times, or trained through machine learning, to create a tree with the 
highest accuracy for a given dataset. In this way, bagging is an ensemble of methods to obtain higher 
predictive performance.

In general, when training a machine learning algorithm to a defined dataset, overfitting can be a con-
cern. This is analogous to the use of a high-order polynomial to fit a dataset comprising one dependent 
variable. The fit can be so “good” that the generated polynomial goes through each data point, but this 
does not necessarily represent a satisfactory fit to the data. Examples of possible overfitting were found 
with the weighted and non-weighted k-NN approach. Both the weighted k-NN with k = 10 and the non-
weighted k-NN approach with k = 1 resulted in a 100 % accurate model. The accuracy was calculated 
by re-substituting existing data points into the generated model to determine if the predicted classifica-
tion was correct. As a result, the model accurately predicted existing data, but it cannot be determined 
how new datasets would perform. Therefore, a method of cross-validation (or verification) was applied 
during the training of the weighted k-NN and bagged tree algorithms. Specifically, n-fold cross-valida
tion was used for both the k-NN and boosted tree algorithms where n = 5. In n-fold cross-validation, 
the data set is randomly sampled into n groups and the selected algorithm is trained on n-1 groups with 
the final group being used as validation for testing the algorithm. This process is then repeated n times 
with each group being used as the validation dataset in turn. As a result the algorithms are resistant to 
overfitting as its accuracy is based on testing against new data. The final trained algorithm then uses all 
data groups to train before any predictions are made by the model.

Two cross-verified and two non-verified simulations were run for both the bagged tree and weighted 
k-NN (k = 10) algorithms. Table 4‑2 summarizes the results of the A/P classifications for the eight 
simulations. There are number of interesting observations from the data, including:

•	 The bagged tree and weighted k-NN algorithms both predict active conditions approximately 
80–90 % of the time.

•	 The bagged tree classification method predicts a similar percentage of realizations for which active 
conditions persist for the entire 100-year simulation period, whereas the k-NN approach predicts 
only approximately half of the realizations are permanently active.

•	 There is relatively little difference between the predictions of the cross-validated and non-verified 
forms of the two algorithms.

•	 Interestingly, there is little difference between the weighted and non-weighted k-NN methods 
(for k = 10).

•	 The results of the duplicate simulations are generally similar, with the largest difference being for 
the cross-validated bagged tree method.
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Table 4‑2. Comparison of active-passive classifications for 100 000 realizations using cross-verified and non-verified bagged tree and weighted k-NN algorithms.

Bagged tree Weighted k-NN (k = 10) Unweighted k-NN (k = 10)

Non-verified Cross-verified Non-verified Cross-verified Non-verified

Simulation 1 Simulation 2 Simulation 1 Simulation 2 Simulation 1 Simulation 2 Simulation 1 Simulation 2 From Table 4‑1

Time steps:
% active 85 87 88 76 78 80 78 79 80
% passive 15 13 12 14 12 20 22 21 20

Realizations:
% active only 84 86 87 73 43 43 43 43 57
% passive only 11 9 7 14 2 2 2 2 2
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One advantage of the cross-validated versions of the algorithms is that a measure of the accuracy of the 
method can be obtained. The results from each of the n training session are averaged and the accuracy 
of the model determined. Using 5-fold cross-validation, the most accurate method was the bagged tree 
algorithm with an accuracy of 89.2 % (with a 0.60 % standard deviation), while the weighted k-NN 
algorithm had an accuracy of 77 %. Due to the random selection of the n-fold groups and implementa-
tion of the algorithm, the training of a data set varies slightly with each model run.

Another measure of algorithm performance is to plot the true versus the predicted class in the form of a 
so-called a confusion matrix. Figure 4‑5 and Figure 4‑6 show the confusion matrices for the weighted 
k-NN and bagged tree methods, respectively. In these plots, a green colour indicates that the predicted 
membership or class was the same as the actual (true) membership. A red colour indicates that the true 
and predicted classes were different. True-positives were higher for the bagged tree method, with false 
negatives half of the k-NN method. The different shades of green and red indicated level of accuracy 
for example a higher true positive rate is more green while a higher false negative rate is more red.

Because of its higher accuracy, the cross-validated bootstrap aggregation (bagged) decision tree 
classification method was used to determine active and passive conditions for the probabilistic pitting 
analysis in Section 5.

Within a given simulation (comprising up to one million realizations), the A-P classification is con-
sistent for all realizations. In other words, a given set of environmental conditions will be classified 
as either A or P for all the realizations in which this data point is selected. However, the classification 
method is re-trained for each simulation, so that a given data point could be classified differently for 
replicate simulations.

Figure 4‑5. Confusion matrix comparing true class and predicted class for the weighted k-NN algorithm 
(k = 10). Class 0 is passive and class 1 is active. Overall accuracy was 77 % and colour shading is gradu-
ated to illustrate respective performance.
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4.3.2	 Regression methods for critical potential data
As described in Section 3.1.2, there are two sources of critical potentials for systems exhibiting passive 
behaviour, those of Cong et al. (2009) and those from the work of Qin et al. (2017). Here the treatments 
of the two sets of data are described and the results of a comparison exercise are discussed.

Cong et al. (2009) used a linear regression method to fit their data to expressions involving pH, [Cl−], 
[SO4

2−], and [HCO3
−] (see Equations (3‑1) and (3‑2)). The effects of HCO3

− and Cl− were studied sepa-
rately from those of HCO3

− and SO4
2−, leading to two expressions for EB and ERP. However, in the case 

of EB, Cong et al. (2009) were able to combine the effects of all three anions into a single expression 
(Equation 3‑1), but separate expressions were retained for the effects of SO4

2− and Cl− in the case of ERP 
(Equations (3‑2a) and (3‑2b), respectively). The experimental studies were carried out at only two pH’s 
(pH 8.3 and 9.5) and at a single temperature (room temperature, 25 °C).

For the probabilistic pitting analysis, the original expressions of Cong et al. (2009) were modified 
slightly. The combined expression for EB was used in the original form, except that the first term was 
replaced by a variable denoted EBconstant (Equation 4‑1)

EB = EBconstant + 0.116 × log[OH−] + 0.197 × log[HCO3
−]

− 0.130 × log([SO4
2−] + [Cl−]) VSCE	 (4-1)

The mean value of the variable EBconstant was set to 1.11 VSCE as in the original expression of Cong et al. 
(2009). However, in the probabilistic analysis, EBconstant was treated as a normally distributed parameter 
with a standard deviation of 0.061 V based on the distribution of replicate measurements shown for 
“E_B” in Figure 2‑5. For each realization, a different value of EBconstant was selected from the normal 
distribution in order to represent the uncertainty in the value of the breakdown potential. This source 
of variability reflects the variability in the replicate measurements in a single environment, and does 
not represent either the variability in the dependence of EB on pH, [Cl−], [HCO3

−], and [SO4
2−], or the 

uncertainty due to the particular method used to determine the critical potentials.

A similar approach was used for the uncertainty in ERP. In this case, however, because the effects of 
all four anions could not be combined into a single expression, the estimation of ERP was based on the 
effects of pH, [Cl−], and [HCO3

−] only (Equation 4‑2)

ERP = ERPconstant + 0.00373 × log[OH−] − 0.0139 × log[HCO3
−]

− 0.0566 × log[Cl−] VSCE	 (4-2)

Figure 4‑6. Confusion matrix comparing true class and predicted class for the bootstrap aggregation deci-
sion tree algorithm. Overall accuracy was 89.2 % and colour shading is graduated to illustrate respective 
performance.
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Repassivation potentials calculated based on the alternative expression given by Cong et al. (2009) 
based on the pH, [SO4

2−], and [HCO3
−] produced similar ERP values to the prediction based on 

Equation (4‑2). As for the breakdown potential, the ERPconstant term was sampled for each realization 
using a normal distribution described by a mean of −0.0925 VSCE (the original value of Cong et al. 
2009) and a standard deviation of 0.005 V (corresponding to that for the ERP data in Figure 2‑5).

The second source of critical potential data is the study of Qin et al. (2017) comprising a set of 
approximately 200 individual EB and ERP data determined as a function of five environmental variables 
(temperature, pH, [Cl−], [HCO3

−], and [SO4
2−]). A regression model was fitted separately to the EB and 

ERP data. As a starting point, the MathWorks MATLAB Regression Learner was used to test many 
possible regression methods, from which two specific regression methods were chosen.

The first method chosen was a machine learning algorithm called support vector machines (SVM) 
where learning algorithms are applied to numerical data sets for the purpose of regression and 
predicting outcomes (Vapnik 1995). Specifically, a Gaussian kernel function was used which returns 
a smooth regression function for prediction of breakdown and repassivation potentials. The second 
method chosen was a machine learning algorithm typically used in statistical analysis which uses 
a regression tree to predict real number outcomes. Specifically, a regression tree algorithm with least 
squares gradient boosting (Friedman 2001) was used where, at each step of the algorithm, a fit to 
minimize mean-square error is desired.

The method with the lowest root-mean-square-error (RMSE) was selected for use in the full 
probabilistic model. To illustrate the error in the chosen algorithms, Figure 4‑7 and Figure 4‑8 show 
the predicted vs. actual response for the EB data from the Qin et al. (2017) dataset. A perfect algorithm 
would result in a 1:1 linear plot. The method selected for use in the model was the boosted tree method 
with a RMSE = 0.0278 (with a standard deviation of 0.0004) for EB and a similar response for ERP 
of RMSE = 0.0383 (with a standard deviation of 0.0009). As with the A/P classification methods, an 
n-fold cross-validation (with n = 5) was used for the implementation of regression methods. Thus, 
when using the Qin et al. critical potentials, there is no variation from realization-to-realization due to 
the regression method but, unlike the analysis for the Cong et al. dataset, there is also no variability 
due to the uncertainty in the data themselves. However, the regression fit of the Qin et al. data will vary 
from simulation to simulation.

Figure 4‑7. Predicted (y-axis) versus the measured (x-axis) breakdown potentials (in VSCE) for a Gaussian 
support vector machine regression algorithm of EB with RMSE = 0.0422.
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Preliminary simulations were performed to determine which critical potential dataset to use in the full 
probabilistic analysis. Table 4‑3 shows a comparison of the two datasets based on the results of simula-
tions comprising 100 000 realizations using the unweighted k-NN (k = 10) method for classification 
of A and P behaviour. As would be expected, there is no difference in terms of the number of time steps 
(first row) or the number of realizations (fourth row) exhibiting active of passive behaviour. Any slight 
differences are the result of differences in the selection of the temperature profile and pore-water pH 
and [Cl−] from the corresponding distributions, which are still apparent in a simulation comprising 
100 000 realizations.

However, there are significant differences in the predictions using the two critical potential datasets 
in terms of pit initiation and growth. If the surface is passive, the Qin et al. (2017) data predict that 
initiation occurs 61 % of the time, whereas the Cong et al. (2009) data predict only 30 % initiation 
(second row, Table 4‑3). Again, a slight difference might be expected as the ECORR values will not have 
been exactly the same due to differences in T, [Cl−], and the value of the O2-consumption rate constant 
a, but such differences would be expected to be minor given the approximately 1.4 million time steps 
for which conditions were predicted to be passive. Of more interest, however, is the difference in the 
number of propagating pits. For the Cong et al. (2009) data, pit propagation only occurred for 0.2 % 
of the time steps following pit initiation (third row). In contrast, pits were predicted to propagate 100 % 
of the time following initiation and prior to repassivation based on the Qin et al. (2017) critical potential 
data. As a consequence, a total of 21 574 pits were predicted for the 100 000 realizations based on the 
Qin et al. data, but only 41 based on the Cong et al. critical potentials (fifth row, Table 4‑3).

Figure 4‑8. Predicted (y-axis) versus the measured (x-axis) breakdown potentials (in VSCE) for a boosted 
tree ensemble regression algorithm of EB with RMSE = 0.0278.
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Table 4‑3. Comparison of the two sets of critical potential data based on the results of preliminary 
probabilistic analyses.*

Cong et al. (2009) Qin et al. (2017)

Time steps:
active 5 747 128 80.9 % 5 707 977 80.3 %
passive 1 352 872 19.1 % 1 392 023 19.7 %

Timesteps:
passive but ECORR < EB 948 734 70.1 % 539 451 38.8 %
passive and ECORR > EB 404 138 29.9 % 852 572 61.2 %

Time steps:
ECORR > EB and ECORR > ERP 960 0.2 % 852 572 100 %
ECORR > EB and ECORR < ERP 403 178 99.8 % 0 0 %

Realizations:
active only 56 468 56.5 % 56 941 56.9 %
passive only 1 710 1.7 % 1 875 1.9 %
active and passive 41 822 41.8 % 41 184 41.2 %

Total number of pits
Mean time steps pit growth

41
22

21 574
39

* Based on simulations with 100 000 realizations using the unweighted k-NN (k = 10) A/P classification method. Each 
realization ran to 100 years in 71 time steps, for a total of 7.1 million time steps per simulation. Both the number of time 
steps or realizations, and the percentage of the total are given for each category.

The cause of this difference in behaviour is inconsistencies between the values of EB and ERP predicted 
using the Cong et al. (2009) expressions. From an electrochemical standpoint, the value of EB must be 
greater than ERP because otherwise the voltammogram would not exhibit the behaviour characteristic 
of film breakdown and growth illustrated by the example in Figure 2‑1. However, this was not the 
case for the Cong et al. data and in the majority of cases (99.8 % of the time according to the data in 
Table 4‑3), the predicted ERP was greater than EB. This is illustrated in Figure 4‑9 which shows the 
values of EB and ERP predicted by the Cong et al. data for a series of 100 realizations. Although the EB 
and ERP values for individual time steps are not apparent, it is clear from the distributions of the two 
parameters that in many cases EB < ERP. That this was not the case when using the Qin et al. (2017) 
critical potentials is shown in Figure 4‑10.

There are a number of possible reasons for the inconsistent behaviour exhibited by the Cong et al. 
data. First, as the original authors themselves cautioned, the applicability of Equations (4‑1) and (4‑2) 
for environmental conditions outside of the ranges for which they were determined is uncertain. In 
particular, the repository environmental data cover a wider range of pH (pH 7–10) than used experi-
mentally (pH 8.3 and 9.5 only). Second, values for EBconstant and ERPconstant were selected from normal 
distributions, but no attempt was made to correlate the two parameters. Thus, in some realizations the 
selected EBconstant value might have corresponded to the (mean − 2s), for example, while the ERPconstant 
value might have corresponded to the (mean + 2s). Even in such an extreme eventuality, however, the 
value of EBconstant (0.988 VSCE = 1.11 VSCE − 2 × 0.061 V) would still have been more than 1 V more-
positive than ERPconstant (−0.0825 VSCE = −0.0925 VSCE + 2 × 0.005 V). Lastly, it is possible that taking 
into account the effect of HCO3

− – Cl− on ERP while ignoring the effect of HCO3
− – SO4

2− results in an 
error in the predicted repassivation potential. While some discrepancy is to be expected, it should be 
pointed out that King and Lilja (2013, 2014) encountered the same issue when using the Cong et al. 
data regardless of whether they used Cong’s Equation (3‑2a) (for the HCO3

− – SO4
2− system) or (3‑2b) 

(for the HCO3
− – Cl− system) to estimate the repassivation potential.

Regardless of the cause of the inconsistency when using the Cong et al. (2009) fitted expressions, it 
is apparent that the Qin et al. (2017) critical potential data provide a consistent dataset and it is this 
source of critical potentials that is used for the full probabilistic analysis.
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4.3.3	 Pit growth kinetics
In fitting Equation (3-3) to the long-term exposure data, Denison and Romanoff (1950) implicitly 
assumed that pit growth was continuous during the exposure. Five different periods of exposure were 
reported between 2 and 14.3 years. However, it is not clear a priori whether the evolution of environ
mental conditions in the repository will result in a single or multiple pitting events. For instance, passi
vation might be more likely at lower temperatures (due in part to the retrograde solubility of CaCO3) 
so it is conceivable based on the temperature profiles in Figure 3‑2 that the surface could be passive 
initially, then become active as the temperature increases, before passivating again as the canister cools. 
Whether such passive-active-passive transitions would result in multiple pitting events would also 
depend, of course, on the value of ECORR which will tend to decrease with time as O2 is consumed. 
Nevertheless, it is not impossible that there could be realizations in which there were multiple pitting 
events. In such circumstances, it would then be necessary to decide whether previous pits reactivate or 
whether new pits initiate at each pitting event. Furthermore, in the case of reactivated pits, it would be 
necessary to define whether growth re-starts at the initial rate or at the rate that existed at the end of the 
previous pitting event.

Figure 4‑9. EB and ERP for a simulation with 100 realizations over 100 years using Cong et al. (2009) 
equations. The break in some of the curves correspond to times when, for the those particular realizations, 
the surface transitioned from passive to active and back to passive again. The critical potentials are not 
defined for active conditions.

Figure 4‑10. EB and ERP for a simulation with 100 realizations over 100 years using Qin et al. (2017) data.
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The possibility of multiple pitting events (i.e., re-initiation of a pit on a surface that has previously repas-
sivated) in a given realization was investigated in the preliminary runs using the k-NN A/P classification 
method. A series of five replicate simulations (each comprising 100 000 realizations) was performed for 
each of the three pit-growth kinetics expressions described in Section 3.1.3 (the pitting factor approach, 
and the two time-dependent expressions for different soils from the Denison and Romanoff study). 
These fifteen simulations were performed for each source of critical potentials (the Cong et al. and Qin 
et al. datasets) for each of the k values previously considered (see Table 4‑1).

The results of the analysis are summarized in Table 4‑4. When using the Cong et al. critical potential 
data, at least one of the 100 000 realizations exhibited multiple pitting events in the majority of simu-
lations. The fraction of simulations with at least one multiple pitting event tended to decrease with 
increasing k-value, which presumably is related to the tendency towards more active behaviour with 
increasing k-value characteristic of this classification method (see Table 4‑1). In contrast, none of the 
simulations in which the Qin et al. critical potential data were used exhibited a single realization with 
multiple pitting events, regardless of the k-value. Thus, a second initiation event was not predicted 
in any of the total of 10.5 million realizations (fifteen 100 000-realization simulations for each of the 
seven k-values) using the Qin et al. data. Since this dataset of critical potentials has been selected over 
those of Cong et al. for the full probabilistic analysis (see Section 4.3.2), the possibility of multiple 
pitting events in a single realization is considered to be minimal and no further consideration was 
given to the issue of pit-reactivation versus initiation of a new pit.

Table 4‑4. Fraction of the fifteen replicate simulations in which at least one realization exhibited mul-
tiple pitting events as a function of k-value for the two different sources of critical potential data.*

k = 1 k = 2 k = 4 k = 6 k = 8 k = 10 k = 12

Cong et al. 14/15 15/15 15/15 10/15 8/15 5/15 2/15
Qin et al. 0/15 0/15 0/15 0/15 0/15 0/15 0/15

* Each of the simulations comprised 100 000 realizations with A/P classification using the unweighted k-NN method. The 
SVM regression method was used to estimate EB for the Qin et al. data

Preliminary analyses were also conducted to determine the effect of the three different pit-growth 
expressions on the predicted damage. Five replicate simulations (each comprising 100 000 realizations) 
were carried out for each of the three pit-growth expressions using the Qin et al. critical potential data. 
The unweighted k-NN classification method was used to determine active or passive behaviour, with k 
varied from 1 to 12, as above. The three pit-growth rate expressions were:

•	 Constant pitting rate of 5 µm/yr based on a pitting factor of 5 and a uniform corrosion rate 
of 1 µm/yr.

•	 Soil #65 of the Denison and Romanoff study (A = 89.2 ± 46 µm yr−n, n = 0.57 ± 0.26).

•	 Soil #66 of the Denison and Romanoff study (A = 188 ± 41 µm yr−n, n = 0.12 ± 0.11).

For the two-time-dependent pit-growth expressions, both A and n (Equation (3-3)) were assumed to 
be normally distributed with the ± indicating one standard deviation. Thus, whereas the pit growth 
rate was the same for all realizations in the case of the “constant” expression, the rate would vary 
from realization-to-realization for the two Denison and Romanoff expressions. These two soils were 
selected partly because of their different time-dependences. For pitting periods of less than 5.2 years, 
the expression for soil #66 results in greater pit depths, while the expression for soil #65 predicts 
deeper pit at longer times.

The maximum predicted pit depths for the three pit-growth expressions are compared in Table 4‑5. 
These depths represent the maximum pit depth in a simulation and are taken from the same series 
of 100 000-realization simulations as in Table 4‑4. Five replicate simulations were performed for each 
growth expression for each k-value. The two time-dependent pit-growth expressions from the Denison 
and Romanoff study predict the largest maximum pit depths, with the expression for soil #65 giving the 
highest values. This implies that the maximum pitting period is greater than 5.2 years, which is the time 
at which the two expressions would give the same time-averaged rate. The ± in the table represents the 
standard deviation of the five replicate simulations. In contrast, the maximum pit depth for the constant 
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pit-growth rate expression was predicted to be 32 µm for all simulations, representing a maximum 
period of pit growth of 6.3 years (based on a constant pitting rate of 5 µm/yr). A period of 6.3 years 
(or 100.8 years) is equivalent to the initial 48 time steps (see Section 4.3.4).

Table 4‑5. Predicted maximum pit depth (in µm) at the time of repassivation for the three pit-growth 
expressions for the same simulations summarized in Table 4‑4.

k = 1 k = 2 k = 4 k = 6 k = 8 k = 10 k = 12

Constant 32 32 32 32 32 32 32
Soil #65 884 ± 69 970 ± 120 1 010 ± 220 972 ± 188 940 ± 143 941 ± 216 843 ± 168
Soil #66 689 ± 32 698 ± 38 695 ± 29 686 ± 28 679 ± 14 693 ± 45 649 ± 9

The values in Table 4‑5 are the average of the maximum pit depths for each simulation. The pit depth 
also varies within a given simulation, however, because of different pitting periods for each of the 
100 000 realizations and, for the two soils expressions, because of differences in the pitting kinetics. The 
distribution of predicted pit depths within a given simulation is discussed in more detail in the Section 5.

Since the pit-growth expression for soil #65 produces the largest maximum pit depths, this expression 
was used for the full probabilistic analysis described in Section 5.

4.3.4	 Time discretisation
The time range used in the model runs from 10−5 years through to 100 years. The lower bound (corre
sponding to a period of approximately 5 minutes) is considered to represent the time of emplacement, 
with the upper bound considered to exceed the maximum time at which all of the initially trapped O2 
has been consumed. In numerical analysis, a sufficiently small time step is required to ensure accuracy, 
but not so small that the execution time becomes excessive. Stepping through the defined time range 
in linear increments would be problematic due to the 7 orders of magnitude (also referred to as 
7 generations). Instead, we step through with equal increment over each generation, in other words 
in equal increments of the logarithm of time (log10 t). For example the range of each generation could 
be split into 10 even increments and there would be 10 increments between 10−5 and 10−4 years and 
similarly 10 increments between 10 and 100 years. The result is the absolute numerical time increment 
is changing over time.

The discretization of the time scale has been chosen to be sufficiently small such that further numerical 
time discretization does not affect the solution. The results from the selected discretizations is then said 
to be a solution independent of the time. To determine the minimum time step, the results of a simula-
tion are analysed until no changes occur with decreasing time step. Pit depth distribution statistics were 
chosen as the metric to compare simulations with varying time discretization. The number of time steps 
per generation (per each decade of time) was varied between one and 1 000, and the effect on the pit 
depth distributions determined for simulations comprising 100 000 realizations.

The pit-depth distributions for the different time-step discretizations are shown in Figure 4‑11, with the 
mean and standard deviations given in Table 4‑6. Based on the values of the mean pit depth, the “fine” 
discretization (100 time steps per decade) differs from the “finer” discretization (1 000 time steps per 
decade) by only 0.8 %. The difference between the fine and “normal” (10 time steps per decade) is 
5.2 %, with the mean pit depth predicted using a “coarse” (1 time step per decade) discretization clearly 
being too coarse.

Table 4‑6. Pit distribution statistics for various time discretizations (based on 100 000 realizations).

Discretization Coarse Normal Fine Finer

Time steps per generation 1 10 100 1 000

Mean pit depth (m) 1.15 × 10−4 5.71 × 10−5 5.39 × 10−5 5.43 × 10−5

Pit depth standard deviation (m) 1.46 × 10−4 5.77 × 10−5 5.41 × 10−5 5.31 × 10−5



46	 SKB TR-20-01

Based on these results, the normal discretization (10 time steps per decade) was used for the purposes 
of code development, but the fine discretization (100 time steps per decade) was used for the full 
probabilistic analysis. A 1 000 000 realization Monte Carlo simulation using the fine discretization 
takes 10 days to run using 20 processors and uses approximately 100 GB of memory. Running the 
same model at the normal discretization takes only 1 day. Repeatability of the results can be observed 
by comparing multiple runs of models with the same input parameters. The standard deviation of the 
mean pit depth over five independent model runs was 1.15 × 10−6 m with a mean of 5.39 × 10−5 m.

4.4	 Final version of the model as implemented
4.4.1	 Sources and treatment of input data
As described above, a number of different sources of input data and of methods of analysis have 
been considered during the development of the model. Based on these preliminary studies, the full 
probabilistic analysis described in Section 5 is based on the following sources of data and statistical 
analytical methods:

•	 Classification of active or passive behaviour is based on the verified bootstrap aggregating decision 
tree (“bagging”) method.

•	 Regression fitting of the critical potential data of Qin et al. is performed using the boosted tree 
ensemble method.

•	 Pit-growth kinetics are based on the Denison and Romanoff expression for soil #65.

•	 “Fine” time discretization is used with 100 time steps per decade, from 10−4 to 100 years.

All other input data are as described in Section 3.

Figure 4‑11. Pit depth histograms for varying log time step discretizations.
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4.4.2	 Simulations performed
A number of types of simulation were performed in order to illustrate various aspects of the predicted 
pitting behaviour:

•	 A “full probabilistic analysis” was run using the data and statistical methods described above 
with a total of 1 000 000 realizations per simulation. The full analysis, therefore, is equivalent 
to an average of approximately 140 realizations for each of the approximately 6 000 deposition 
holes in the repository.

•	 In order to present the model output visually, a minimal probabilistic analysis was performed with 
a total of just 100 realizations with a complete set of diagnostic graphical plots. For simulations 
with a larger number of realizations, a limited set of graphical outputs were produced in order to 
avoid the appearance of an overwhelming mass of data points.

•	 The progression of the pit-depth distribution with time was investigated using 100 000-realization 
simulations for periods of between 10−4 and 0.1 years in order to examine the development 
of shallow pits.

•	 The full analysis was performed with the maximum value of the triangular pH distributions 
of either pH 10 or pH 9.

•	 Duplicate simulations were performed with 1 000 000 realizations and five simulations were 
performed with 100 000 realizations in order to examine the reproducibility of the simulations.
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5	 Results of probabilistic pitting analysis

5.1	 Full probabilistic analysis
The full probabilistic analysis comprised a simulation with 1 000 000 Monte Carlo realizations. A 
summary plot of the evolution of active and passive behaviour is shown in Figure 5‑1 and a histogram 
of the predicted pit depths in Figure 5‑2. Table 5‑1 provides a summary of various indicators of the 
active-passive and pitting behaviour, not only for the full probabilistic analysis comprising 1 000 000 
realizations but also for more limited simulations with either 100 000 or 10 000 realizations.

Figure 5‑1 shows the time dependence of the number of realizations exhibiting active behaviour 
(in blue), passive behaviour without film breakdown (in black), and passive behaviour with pit growth 
(in red). At any given time, between 85 % and 90 % of the realizations predict that the surface of the 
canister will be in the active condition based on the sampled pH and [Cl−] and the time-dependent T, 
[SO4

2−], and [HCO3
−]. This prediction is consistent with our general understanding that copper will 

corrode actively in the presence of compacted bentonite (King et al. 2010). For the remaining 10–15 % 
of the realizations, the canister surface is predicted to be passive. Film breakdown leading to pitting 
occurs early during the evolution of the repository environment, at a time when there is sufficient O2 
present to shift ECORR to a value more-positive than EB. Pitting becomes infrequent at times beyond 
2–3 years, although it is not possible to state when pitting finally ceases based on the scale used in 
Figure 5‑1. After 2–3 years, passive conditions become marginally more favoured, possibly because 
of the decrease in [SO4

2−] with the increasing canister temperature during this period. Sulphate exhibits 
a complex effect on the active-passive behaviour of copper (Qin et al. 2017). This tendency towards 
more-passive conditions is not a consequence of an increase in [HCO3

−] or decrease in temperature, 
both of which promote passivation (Qin et al. 2017), since both parameters are evolving in the opposite 
direction during this pre-thermal-peak period.

Figure 5‑1. Time dependence of the number of active, passive, and pitting realizations for the full probabi
listic analysis.
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The consequences for pitting of the canister are shown in Figure 5‑2 in the form of a histogram 
of predicted pit depths. The maximum pit depth for any of the 1 000 000 realizations is of the order 
of 1 mm, with the majority of pits being < 100 µm deep. (An allowance of the order of 100 µm was 
used to account for localised corrosion in the form of surface roughening for SR-Site, SKB 2010). 
On the logarithmic depth scale used in Figure 5‑3, the pit-depth histogram exhibits a bi-modal 
distribution, the cause of which is discussed in more detail in Section 5.3.

Figure 5‑2. Histogram of pit depths for the full probabilistic analysis. The majority of pits are predicted to 
be < 100 µm (1 × 10−4 m) in depth.

Figure 5‑3. Semi-log histogram of pit depths for the full probabilistic analysis.
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The duration of the individual pitting events also varied significantly (Figure 5‑4). The shortest pitting 
period was 0.0661 years (24 days) and the longest period was 6.92 years. However, there were relatively 
few long-lived pits, with the median and mean pit lifetimes being 0.20 and 0.41 years, respectively.

Analysis of the pit initiation times is also interesting. Of the total of 124 289 pits, all but 104 of them 
(124 185 or 99.92 % of the total) initiated immediately (i.e., at the minimum time of 10−5 years). 
Of the pits that initiated later, 2 pits initiated at 0.126 years and the remaining 102 pits initiated 
between 2.5 and 3.0 years. As discussed in more detail below, this initiation behaviour is consistent 
with the observation that active or passive behaviour tends to be established for the entire simulation 
period, with relatively few instances of switching between active and passive behaviour, or vice versa, 
during a given realization.

Greater insight into the predicted behaviour can be obtained from some of the statistical data presented 
in Table 5‑1. Data are presented for both individual time steps (of which there are 701 for each realiza-
tion) and on the basis of the number or percentage of realizations. The canister surface is predicted to 
be passive for only 12.8 % of the 701 million time steps in the full probabilistic analysis. Interestingly, 
active conditions were maintained throughout the 100-year simulation period for 83.5 % of the realiza-
tions. In contrast, 10.9 % of the realizations were entirely passive, with only 5.6 % of the realizations 
exhibiting both active and passive conditions.

Figure 5‑4. Distribution of pitting durations for the full probabilistic analysis.
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Table 5‑1. Summary statistics for the full probabilistic pitting analysis and comparison with 
simulations with smaller numbers of realizations.*

Full probabilistic analysis
Parameter 1 000 000 100 000 10 000

% of time steps:
Active condition 87.2 87.2 87.1
Passive condition 12.8 12.8 12.9

% of realizations:
Active only 83.5 86.1 81.4
Passive only 10.9 9.8 10.4
Active and passive 5.6 4.1 8.3

% of passive time steps:
No film breakdown (ECORR < EB) 39.0 35.6 44.9
Pit initiation and growth 61.0 64.4 55.1
Film breakdown but no growth (ECORR > EB, but ECORR < ERP) 0.0 0.0 0.0

% of all realizations in which:
Pit initiation occurred 12.4 13.3 13.7
Pit re-initiation occurred 0.0 0.0 0.0
Predicted pit depth < 100 µm 10.8 11.6 11.5
Predicted pit depth > 1 mm 0.0002 0.00010 0.0000

Total number of pits
Number of pits with depth < 100 µm
Number of pits with depth > 1 mm
Maximum pit depth (mm)
Median pit depth (mm)
Mean pit depth (mm)
Pit depth standard deviation (mm)

124 289
108 415

2
1.22
0.039
0.053
0.053

13 340
11 575

1
1.19
0.039
0.054
0.054

1 372
1 154

0
0.61
0.043
0.060
0.059

* All simulations were performed for a period of 100 years with 100 time increments per decade (total of 701 time incre-
ments). The critical potential data of Qin et al. were used, along with the pit-growth kinetics for soil #65.

Of the 12.8 % of the time that the surface was predicted to be passive, no film breakdown occurred 
39.0 % of the time (third row of data in Table 5‑1). The passive film was predicted to remain stable in 
these cases either because the film-breakdown potential was quite positive for the environmental condi-
tions at the time or because the value of ECORR was too low possibly because a fraction of the O2 had 
already been consumed. For the remaining 61.0 % of the time that the surface was passive, however, pit 
initiation and propagation were predicted to occur. For none of the approximately 55 million individual 
time steps that the surface was passive was film breakdown predicted but no growth occurred, i.e., in 
no case was ECORR > EB and ECORR < ERP. In other words, in all cases EB > ERP as would be expected 
based on the definition of these parameters and which was confirmed during preliminary simulations 
when using the Qin et al. critical potential data, but not those of Cong et al. (see the earlier discussion 
in Section 4.3.2).

It is also of interest to consider the predicted pitting behaviour on the basis of the entire realizations, 
each of which represents the evolution of the corrosion behaviour of a canister in a particular deposi-
tion hole (fourth row of data in Table 5‑1). Pitting is predicted to occur in 12.4 % of the cases, but 
in no case is more than one pit predicted to initiate in a given realization. Therefore, the evolution 
of environmental conditions does not support the repeated passivation and breakdown of a surface 
film on the canister. Once conditions for repassivation are established, there is no indication that the 
environment can once again support initiation and growth of a pit.

In terms of pit growth (fifth row of data in Table 5‑1), the vast majority of pits (87 %) are predicted 
to be < 100 µm in depth. As noted above, this depth is of the same order as the corrosion allowance 
for surface roughening used for SR-Site (SKB 2010). Only two of the total of over 124 000 predicted 
pitting events resulted in pit depths > 1 mm. The deepest pit was predicted to be 1.22 mm deep, with 
a median and mean depth of only 39 µm and 53 µm, respectively. As indicated in Figure 5‑3, there 
is a relatively wide distribution of pit depths, consistent with the standard deviation of 53 µm.
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Also given in Table 5‑1 are summary statistics for simulations with a smaller number of realizations 
than the full analysis, in particular 100 000 and 10 000 realizations. Although there are slight differences 
between the results of the three simulations, the overall conclusions are similar for each. The most 
significant difference is the increase in maximum pit depth and a higher probability of predicting 
a deep pit (> 1 mm) with increasing number of realizations.

5.2	 Visualization of pitting behaviour based on 100 realizations
It is difficult to get a clear picture of the underlying causes of the predicted active-passive behaviour 
and resulting pitting from a simulation consisting of one million realizations. For this reason, a simula-
tion was performed with just 100 realizations and the results illustrated graphically by comparing the 
responses of several parameters simultaneously. Figure 5‑5 shows that the time dependence of active, 
passive, and pitting behaviour for a reduced number of realizations is similar to that for the full proba-
bilistic analysis in Figure 5‑1, suggesting that conclusions drawn from the 100-realization simulation 
should also be valid for the full analysis.

Figure 5‑6 illustrates the interaction matrix for the five environmental parameters and time and shows 
their impacts on the active (blue) and passive (red) behaviour for a 100-realization simulation. If at 
least one of the two parameters varies with time (such as temperature, [SO4

2−], or [HCO3
−]), the interac-

tion diagram takes the form of 100 lines of red or blue (or, in a small number of cases, red and blue) 
symbols. If one of the two parameters is pH or [Cl−], both of which are constant for a given realization, 
the lines are straight, otherwise they are curves. The interaction diagram for pH and [Cl−], both of 
which are constant with time, is simply a plot of 100 red or blue symbols.

Such a large amount of data can be overwhelming, but a few trends are visible. The two environmental 
parameters that have the greatest influence on whether the surface is active or passive are the pH and 
[Cl−]. Thus, the pH-[Cl−] and [Cl−]-pH interaction diagrams both show that passivation occurs at high 
pH (greater than ~ pH 8) and at [Cl−] less than approximately 0.05 mol/L. Active conditions can exist at 
pH > 9 if the [Cl−] is sufficiently high. In contrast, both active and passive behaviour is predicted over 
the entire ranges of T, [SO4

2−], and [HCO3
−] implying that these parameters exert either a secondary 

or negligible influence on passivity.

Figure 5‑5. Time dependence of the number of active, passive, and pitting realizations for a simulation 
comprising one hundred realizations.
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-20-01 Figure 5‑6. Interaction matrix showing the effects of different environmental parameters and time in determining either active 
(in blue) or passive (in red) behaviour.
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Figure 5‑7 shows the effect of pH, [Cl−], and temperature on the active-passive behaviour. The solid 
lines of points are the modelled conditions and the open circles are the experimental data of Qin et al. 
(2017), with blue and red indicating active and passive conditions, respectively. As shown by the 
interaction matrix, passivity tends to occur at higher pH and lower [Cl−], but tends to be independent 
of temperature. The evolution of the system with time is illustrated in Figure 5‑8, which shows that 
the majority of realizations exhibit either active or passive behaviour. Although it is again difficult to 
visualise because of the large amount of data, there only appears to be one out of the 100 realizations 
in which both active and passive behaviour are predicted to occur. For this realization, labelled “a” 
in the figure and located at ~ pH 8.9 but at a low [Cl−], the canister surface is predicted to start off 
passive, then become active during the thermal peak, before finally passivating again. It is uncertain 
whether this switch to active behaviour is a direct result of the increase in temperature or because 
of the associated decrease in [HCO3

−] (or [SO4
2−]). But the tenuous nature of the boundary between 

active and passive behaviour under these environmental conditions is indicated by the second realiza-
tion labelled “b” in Figure 5‑8. This realization is at the same pH but a slightly lower [Cl−], which 
should promote greater passivity, whereas in fact the canister surface is predicted to be active for the 
entire duration. It is quite possible that for this run the canister was generally hotter than for realiza-
tion “a”, with a corresponding lower [HCO3

−] and a greater tendency to remain active.

Figure 5‑7. Effect of chloride concentration, pH, and temperature on the active (blue)-passive (red) behaviour. 
Lines of solid points represent the sampled data from the 100 realizations, with the corresponding experimental 
data of Qin et al. shown as open circles using the same colour coding.
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Figure 5‑8. Effect of chloride concentration and pH on the time dependence of active (blue)-passive (red) 
behaviour. The lines of solid points represent the sampled data from the 100 realizations. Lines labelled 
a and b are discussed in the text.

Figure 5‑9. Effect of pH and temperature on active (blue)-passive (red) behaviour. The realization labelled 
“a” is discussed in the text. Open symbols represent the experimental data of Qin et al. shown using the 
same colour coding.

Figure 5‑9 shows the influence of both temperature and pH on passivity and confirms the over-riding 
effect of the latter environmental parameter. Passivation is only predicted for pH ≥ 8.9 but, as noted 
above, active behaviour can be maintained at pH values as high as approximately pH 9.7, presumably 
because of a high [Cl−] (compare with Figure 5‑7 and Figure 5‑8). The experimental data indicating 
passivation at pH < 8.9 (as indicated by the red open circles in the figure) were determined at low [Cl−] 
or in the absence of chloride ions; conditions that are not representative of the predicted conditions in 
the repository. There is no indication from the data in Figure 5‑9 that temperature has any influence on 
the active-passive behaviour. This conclusion is further shown in Figure 5‑10 which shows evidence 
of passivity at all temperatures between 33 °C and the peak temperature for any of the profiles of 
approximately 79 °C.
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Figure 5‑10. Evolution of the canister surface temperature and the predicted active (blue)-passive (red) 
behaviour.

Similarly, neither the sulphate (Figure 5‑11) nor the bicarbonate (Figure 5‑12) concentration appears 
to have any significant impact on whether the surface is predicted to be active or passive.

Figure 5‑11. Effect of sulphate concentration, pH, and temperature on the active (blue)-passive (red) 
behaviour. Open symbols represent the experimental data of Qin et al. shown using the same colour coding.
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Although passivity (as well as active behaviour) can occur throughout the 100-year simulation period, 
film breakdown and pitting is limited to be the first few years in the evolution of the environment. 
Figure 5‑13 shows the time dependence of the three possible conditions for the canister surface: active, 
passive (ECORR < EB), or pitting (ECORR > ERP). (Also shown is the case in which film breakdown is 
predicted to occur, ECORR > EB, but for which there is no propagation as ECORR < ERP. This condition did 
not arise using the critical potential data of Qin et al. and is not discussed further here). The different 
lines represent individual realizations, although only a few of the 100 lines are visible as many overlap 
each other. For the majority of realizations, active conditions are maintained throughout the 100-year 
simulation period. For those few that exhibit passive behaviour (between 6 and 9 at different times 
for this particularly set of 100 realizations, see Figure 5‑5), all are subject to film breakdown and pit 
initiation at early times. There then follows a period of pit growth before repassivation occurs with, in 
the majority of cases, the surface remaining passive for the rest of the simulation period.

There are three realizations of note in Figure 5‑13. The realizations labelled “c” and “d” appear to tran-
sition from a period of film breakdown and pit growth directly to an active condition. Thus, these pits 
do not “repassivate” in the true sense of the term, but instead localised corrosion transitions to active 
dissolution because of some time-dependent change in the environment (i.e., a change in temperature, 
[SO4

2−], or [HCO3
−]). The realization labelled “a” seems to be the same realization “a” identified in 

Figure 5‑8 and Figure 5‑9. For this realization, the propagating pit does repassivate (after 2 years) prior 
to the surface becoming first active (after 4 years) and then passive again (after ~ 25 years).

The early pitting behaviour is also illustrated in Figure 5‑14 which shows the time dependence of 
ECORR and of the two critical potentials EB and ERP. The predicted corrosion potential decreases with 
time because of the dependence of ECORR on [O2] (Equation (3‑4)) and the assumed exponential decay 
in [O2] with time (Equation (3-7)). The absolute value of ECORR depends also on the [Cl−] selected for 
the particularly realization (Equation (3‑4)). It is interesting to note that active realizations tend to 
give more-negative ECORR values than passive realizations. Since the expression for ECORR is based on 
the assumption of active conditions only (Section 3.1.4), this observed tendency is due to the fact that 
higher [Cl−] (and, possibly, higher T) promote active behaviour as well as more-negative ECORR values. 
The rate of decrease of ECORR with time depends on the value selected for the O2-consumption time 
constant a in each realization. Figure 5‑15 shows the distribution of a values for the 100 realizations, 
expressed in terms of the equivalent times to reduce the initial [O2] by a factor of 99.9 %. Consumption 
of 99.9 % of the O2 occurred within a period of approximately one year for 96 of the 100 realizations.

Figure 5‑12. Effect of bicarbonate concentration, pH, and temperature on the active (blue)-passive (red) 
behaviour. Open symbols represent the experimental data of Qin et al. shown using the same colour coding.
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Finally, it is worthwhile noting that the Qin et al. critical potential data used in this simulation consist-
ently predict EB values greater than the ERP (Figure 5‑14), as would be expected based on the definition 
of these parameters.

Figure 5‑13. Time dependence of active conditions, film breakdown, pit propagation, and passivation. The 
different lines represent individual realizations.

Figure 5‑14. Predicted evolution of the corrosion potential ECORR for active and passive conditions and of the 
breakdown EB and repassivation ERP potentials for passive conditions.
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5.3	 Progression of pitting behaviour
As noted above, the histogram of pit depths for the full probabilistic analysis (Figure 5‑2) exhibited 
an unusual bi-modal distribution. It is not immediately clear whether this distribution is the result of a 
group of pits that stop propagating at an early stage during the repository evolution in some realizations 
while pits continued to grow in other realizations or whether the smaller pits initiated later. In order to 
investigate the time dependence of pit initiation and growth in more detail, a series of 100 000-realiza-
tion simulations were performed for different overall simulation times of 10−4 year (53 mins), 
10−3 years (8.8 hrs), 0.01 years (3.7 days), and 0.1 years (36.5 days).

Figure 5‑16 shows the pit depth distribution for each simulation time, which are also shown super
imposed in Figure 5‑17. From these plots, it appears that the population of very shallow pits (of the 
order of 10−8 m to 10−7 m in depth) does initiate at a later stage, and are not pits that initiate from the 
outset and repassivate early. This second pit population appears to initiate and grow in the time period 
between 3.7 days and 36.5 days (0.01–0.1 years), but the pits must repassivate relatively quickly as 
otherwise they would grow deeper. Figure 5‑2 suggests that these pits remain even at the end of the 
100-year simulation period.

These conclusions are tentative because the simulation for 0.1 years exhibited a greater degree 
of passivity than the other simulations (Table 5‑2). As discussed in more detail in Section 5.5, this 
variability in predicted active-passive behaviour is to be expected even for simulations comprising 
100 000 realizations, but does not seem to impact the pit depth distribution.

Figure 5‑15. Histogram of the samples times for consumption of 99.9 % of the initial oxygen based on 
a simulation of 100 realizations.
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Figure 5‑16. Collection of pit-depth histograms for 100 000-realization simulation periods from 10−4 
to 0.1 years.

Figure 5‑17. Overlay of pit-depth distributions for 100 000-realization simulation periods from 10−4 
to 0.1 years.
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Table 5‑2. Summary statistics for 100 000-realization simulations with simulation periods of between 10−4 and 100 years.*

Simulation period 10−4 years 10−3 years 0.01 years 0.1 years 100 years

% of time steps:
Active condition 86.8 87.9 87.9 71.9 87.2
Passive condition 13.2 12.1 12.1 28.1 12.8

% of realizations:
Active only 86.8 87.9 87.9 71.9 86.1
Passive only 13.2 12.1 12.1 28.1 9.8
Active and passive 0.0 0.0 0.0 0.0 4.1

% of passive time steps:
No film breakdown (ECORR < EB) 0.0 0.0 0.0 0.1 35.6
Pit initiation and growth 100.0 100.0 100.0 100.0 64.4
Film breakdown but no growth (ECORR > EB, but ECORR < ERP) 0.0 0.0 0.0 0.0 0.0

% of all realizations in which:
Pit initiation occurred 13.2 12.1 12.1 28.1 13.3
Pit re-initiation occurred 0.0 0.0 0.0 0.0 0.0
Predicted pit depth < 100 µm 12.9 11.8 11.8 26.9 11.6
Predicted pit depth > 1 mm 0.0 0.0 0.0 0.0 0.00010

Total number of pits
% of pits with depth < 100 µm
Number of pits with depth > 1 mm
Maximum pit depth (mm)
Mean pit depth (mm)
Pit depth standard deviation (mm)

13 202
97.8
0
0.38
0.008
0.030

12 107
97.7
0
0.39
0.010
0.031

12 131
97.1
0
0.47
0.016
0.033

28 070
95.9
0
0.43
0.032
0.035

13 340
86.8
1
1.19
0.054
0.054

* All simulations were performed using 100 time increments per decade starting from 10−5 years. The critical potential data of Qin et al. were used, along with the pit-growth kinetics for soil #65.
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5.4	 Effect of maximum bentonite pore-water pH
A sensitivity analysis was performed to determine the effect of the maximum value of the triangular 
pore-water pH distribution (Figure 3‑3). As an alternative to the default value of pHmax = 10, a value 
of pHmax = 9 was selected as representative of more-effective pH buffering of the pore water by calcite.

Table 5‑3 summarises the results of full probabilistic analyses comprising 1 000 000 realizations with 
the two different pHmax values. There is relatively little difference between the predicted behaviour in 
the two cases, particularly in terms of the predicted pitting behaviour. As would be expected, a greater 
percentage of the individual time steps and realizations exhibited active behaviour for the lower pHmax 
value, along with fewer passive conditions. The lower pHmax value significantly reduced the percentage 
of realizations exhibiting both active and passive behaviour, suggesting that the lower pH value reduces 
the number of realizations on the borderline between active and passive conditions.

In terms of the consequences for the predicted pitting behaviour, although there were fewer pitting 
events predicted at the lower pH, the size distributions of the pits were similar. Thus, the median, mean, 
and standard deviation of pit sizes were the same regardless of the pHmax value. Although the maximum 
pit depth was smaller for the lower pHmax value, there were a larger number of pits deeper than 1 mm 
for pHmax = 9.

Overall, therefore, there is relatively little impact of the maximum pore-water pH value on either 
the active-passive behaviour or the extent of pitting. This conclusion is somewhat surprising given 
the apparent predominant role of the pore-water pH in promoting passivation (see discussion in 
Section 5.2). Thus, it would seem that it is the combination of high pH and low [Cl−] that supports 
passivation and pit growth, not just the high pH alone.

Table 5‑3. The effect of the maximum value for the triangular pH distribution for the full 
probabilistic analysis.*

Parameter pHmax 10 pHmax 9

% of time steps:
Active condition 87.2 89.6
Passive condition 12.8 10.4

% of realizations:
Active only 83.5 88.8
Passive only 10.9 9.6
Active and passive 5.6 1.6

% of passive time steps:
No film breakdown (ECORR < EB) 39.0 39.4
Pit initiation and growth 61.0 60.6
Film breakdown but no growth (ECORR > EB, but ECORR < ERP) 0.0 0.0

% of all realizations in which:
Pit initiation occurred 12.4 10.4
Pit re-initiation occurred 0.0 0.0
Predicted pit depth < 100 µm 10.8 9.1
Predicted pit depth > 1 mm 0.0002 0.003

Total number of pits
Number of pits with depth < 100 µm
Number of pits with depth > 1 mm
Maximum pit depth (mm)
Median pit depth (mm)
Mean pit depth (mm)
Pit depth standard deviation (mm)

124 289
108 415

2
1.22
0.039
0.053
0.053

104 490
90 587

3
1.12
0.039
0.054
0.054

* All simulations comprised 1 000 000 realizations and were performed for a period of 100 years with 100 time increments 
per decade (total of 701 time increments). The critical potential data of Qin et al. were used, along with the pit-growth 
kinetics for soil #65.
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5.5	 Comparison of replicate simulations
Multiple simulations were performed for simulations comprising both 1 000 000 realizations (duplicate 
simulations with a maximum pH of pH 9) and 100 000 realizations (five simulations with the reference 
maximum pH of pH 10). Even with such large numbers of realizations, differences in the predicted 
active-passive and pitting behaviours are observed from simulation to simulation (Table 5‑4). For 
example, for the five simulations with 100 000 realizations, the percentage of active conditions varies 
from 52.4 % to 89.4 %. The percentage of passive-only realizations (i.e., realizations for which passive 
conditions were maintained for the entire 100-year simulation period) varied from just 7 % to as high 
as 37.6 %. These differences were also observed in the pit initiation behaviour, with pitting predicted in 
between 11.3 % and 49.5 % of the realizations. However, there was far less difference predicted in the 
extent of pit growth. The fraction of pits with a depth < 100 µm only varied from 86.1 % to 87.5 % for 
the five replicate simulations. Although one of the five simulations predicted two pits deeper than 1 mm 
compared with no pits this deep in the other four simulations, the maximum pit depth for the five runs 
only varied from 0.69 mm to 1.09 mm. Furthermore, the median, mean, and standard deviation of the 
pit depth distributions were virtually identical for the five replicate simulations. The extent of pit growth 
depends on the pitting period and on the values of only two sampled parameters to define the pitting 
kinetics (A and n). Even though the number of pits is quite variable between replicate simulations 
(between 11 317 and 49 468), there are a sufficient number of pitting events that the variability in the 
factors determining pit growth is not apparent in the measures used here to characterize the pitting 
damage (the maximum, median, and mean pit depths).

This simulation-to-simulation variability would be expected to be reduced by increasing the number 
of realizations. Only two 1 000 000-realization simulations were conducted because of the length of time 
required to run the model (Table 5‑4), so it is difficult to be certain whether the variability is reduced. In 
terms of the fraction of time steps exhibiting active or passive behaviour, the results from the two simu-
lations suggest a degree of consistency, although there is still some difference in terms of the fraction 
of passive realizations. There does seem to be some consistency in the fraction of realizations exhibiting 
pit initiation as well as in the characteristics of the resulting damage, but again these conclusions are 
based on a sample of only two simulations.

In conclusion, it would seem that at least 1 000 000 realizations are necessary to prevent simulation-
to-simulation variability, but the exact number required has not been established.

5.6	 Scaling issues
In using an electrochemical approach to predicting the pitting behaviour of copper canisters, there are 
at least two questions related to the difference in physical size of the electrodes used for the measure-
ments and the canisters themselves.

First, how many pits will there be on a given canister and what will be the distribution of pit depths? 
The main aim of the current model was to determine the effects of the variability and uncertainty in 
the environmental conditions in the repository on the pitting behaviour of the canisters. Accordingly, 
each realization represents the passivation and localised corrosion behaviour in a single deposition 
hole, in which the environmental conditions are implicitly assumed to be spatially uniform. Therefore, 
the current model does not provide any information regarding the number of pits that might occur on 
a given canister or the distribution of pit depths.

However, a full probabilistic analysis comprising 100 000 or 1 000 000 realizations does provide an 
indication of the maximum pit depth on any canister in the repository. By repeating the analysis many 
times, those combinations of conditions that lead to passivation, pit initiation, and an extended period 
of pit growth are inevitably captured. The data in Table 5‑1 and Table 5‑4 show that, although there is 
some tendency for the maximum pit depth to increase with the number of realizations, there is relatively 
little difference in the predicted maximum pit depth for simulations of 100 000 or more realizations. 
Therefore, it is reasonable to conclude that the maximum pit depth from the 1 000 000-realization 
simulation represents the deepest pit on any of the canisters in the repository.
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Table 5‑4. Comparison of the results from replicate simulations. Duplicate 1 000 000-realization simulations were run for pHmax = 9 and five 100 000-realization 
simulations were run for pHmax = 10.*

Number of realizations per simulation 1 000 000 100 000

Run # Run 1 Run 2 Run 1 Run 2 Run 3 Run 4 Run 5

% time steps with active condition
% time steps with passive conditions

91.7
8.3

89.6
10.4

81.1
18.9

85.6
14.4

84.6
15.4

52.4
47.6

89.4
10.6

% active only realizations
% passive only realizations
% active and passive realizations

89.9
1.7
8.4

88.8
9.6
1.6

78.3
13.6
8.1

85.4
12.7
1.9

67.3
10.0
22.7

50.5
37.6
11.9

86.7
7.0
6.4

% of passive time steps:
No film breakdown (ECORR < EB) 23.8 39.4 31.1 36.0 78.5 34.8 39.0
Pit initiation and growth 76.2 60.6 68.9 64.0 51.5 65.2 61.0
Film breakdown but no growth (ECORR > EB, but ECORR < ERP) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% of all realizations in which:
Pit initiation occurred 10.1 10.4 20.7 14.6 13.2 49.5 11.3
Pit re-initiation occurred 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total number of pits
% of pits with depth < 100 µm
Number of pits with depth > 1 mm
Maximum pit depth (mm)
Median pit depth (mm)
Mean pit depth (mm)
Pit depth standard deviation (mm)

100 585
87.3
1
1.00
0.038
0.053
0.054

104 490
86.7
3
1.12
0.039
0.054
0.054

20 731
87.4
0
0.86
0.038
0.053
0.053

14 618
87.5
0
0.69
0.039
0.053
0.053

13 213
86.3
0
0.88
0.039
0.055
0.056

49 468
87.3
2
1.09
0.038
0.053
0.054

11 317
86.1
0
0.93
0.040
0.056
0.057

* All simulations were performed for a period of 100 years with 100 time increments per decade (total of 701 time increments). The critical potential data of Qin et al. were used, along with the pit-
growth kinetics for soil #65.
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The second scaling question is whether the use of measurements made on electrodes of the order 
of a few cm2 in size can be used to predict the pitting behaviour of a canister with a surface area of 
approximately 17 m2? For passive alloys, such as stainless steel, it has been shown that the value of EB 
shifts to more-negative values with increasing electrode size (Burstein and Ilevbare 1996). This trend 
is associated with the increasing number of suitable initiation sites (for example, MnS inclusions) 
with increasing surface area. However, in the case of copper, the first requirement for pitting is that 
the surface be in the passive state. The results in Figure 5‑1 and Table 5‑1 indicate that pit initiation 
is predicted to occur in the majority of cases in which the surface is predicted to be passive. In other 
words, the probability of pitting is determined primarily by whether the surface is passive rather than 
by film breakdown. Thus, more-negative values of EB due to the use of larger electrodes, or because 
of any other change in the experimental procedure such as the use of different potential scan rates or 
of different methods for pretreating the electrode, would not have significantly increased the prob-
ability of pit initiation. Since passivation, unlike pit initiation, is not a stochastic process, the size of 
the electrode should have little influence on the experimental conditions found to induce passivation. 
It is concluded, therefore, that the difference in size of the electrodes and canister has no significant 
impact on the predicted pitting behaviour.

The difference in size between experimental samples and the canister may also affect the pit growth 
kinetics. The samples used by Denison and Romanoff (1950) were of the order of 0.1–1.0 m2 in size, 
or approximately 1 to 2 orders of magnitude smaller than the canister surface. Larger surfaces might 
be expected to exhibit different pit growth kinetics as there is a higher probability of a fast-growing 
pit on a larger surface. However, it has already been argued above that the Denison and Romanoff pit 
growth data are conservative as the soils were apparently aerobic with ready access of O2. Therefore, 
any under-estimate of pit growth kinetics due to the small size of the experimental samples is offset 
by the apparently more aerobic conditions of the near-surface burial sites compared with the condi-
tions expected for the canister surrounded by saturated compacted buffer material in a sealed deep 
geological repository.
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6	 Conclusions

A methodology has been developed for the probabilistic assessment of the pitting of copper canisters. 
The model has been applied to the assessment of pitting under aerobic, saturated environmental 
conditions. Such conditions may or may not exist during the evolution of the repository environment, 
depending upon the relative rates of saturation and redox evolution. Nevertheless, the techniques 
developed will be useful for the future assessment of the probability and extent of localised corrosion 
under aerobic, unsaturated conditions which will certainly exist in the repository.

The model is based on well-established electrochemical criteria for pitting corrosion and accounts for 
variability and uncertainty in both the pitting process and also the relevant repository environmental 
conditions. Data from the literature on the active-passive nature of copper surfaces and on critical 
potentials for passive film breakdown and repassivation are used. Environmental data representative 
of the near-field conditions are used to describe the evolution of the corrosive environment at the 
canister surface during the aerobic period.

Each model run, or realization, simulates the pitting characteristics of a canister in an individual 
deposition hole. In each realization, the probability of passivation is determined by comparing the 
selected environmental conditions with those found experimentally to induce passivity using a veri-
fied bootstrap aggregating decision tree (“bagging”) classification algorithm. The probability of pit 
initiation and growth is determined by comparing the value of the corrosion potential ECORR to the 
critical potential data of Qin et al. (2017) analysed using a boosted tree regression method. Pit depths 
are estimated based on the predicted pitting duration and an empirical pit growth expression for an 
aggressive soil from the study of Denison and Romanoff (1950).

A different set of environmental conditions is defined for each realization. Values for the bentonite 
pore-water pH and Cl− concentration are sampled from suitable distributions. A unique temperature-
time profile is selected from a set of 6 916 profiles, one for each deposition hole in the repository. 
The pore-water concentrations of sulphate and bicarbonate ions are calculated with the help of the 
PHREEQC thermodynamic code as a function of temperature based on the assumption of solubility 
control by the relevant solid phases. The time dependence of the dissolved O2 concentration, required 
to calculate the value of ECORR, is calculated on the assumption of an exponential decay, with the time 
required to consume 99.9 % of the initial inventory sampled from a uniform distribution of between 
5 weeks and 5 years.

The full probabilistic analysis comprises one million realizations and represents an average of 145 runs 
per deposition hole. Time is incremented from 10−5 years to 100 years and at each time step the active 
or passive nature of the surface is determined based on the sampled and calculated environmental 
parameters. If the surface is passive, the probability of pit initiation is determined based on the values 
of ECORR and of the film breakdown potential. If a pit initiates, the duration of pit propagation is esti-
mated by comparing the value of ECORR to the repassivation potential, both of which are updated at each 
time step as the environment evolves. A single simulation of 1 000 000 realizations with the optimised 
time stepping of 100 increments for each order of magnitude in time takes approximately 10 days using 
20 parallel processors and 100 GB of memory.

The main aim of the work was to develop a suitable methodology for the probabilistic assessment 
of localised corrosion of canisters in the repository. In this regard, the MATLAB software has proven 
to be suitable for model development and implementation. The built-in library of statistical methods 
was useful for selecting and comparing different classification and regression techniques for the 
analysis of the active-passive and critical potential data, respectively. Other aspects of the code 
implementation and execution that have been optimized include:

•	 The time discretization required to produce a solution that is independent of the size of the time step.

•	 The number of realizations for which it is feasible to be able to visually discern trends and 
recognize patterns when plotted graphically.

•	 The effect of the number of realizations on the reliability of the solution.

•	 Simulation-to-simulation reproducibility.
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Although it is recognized that aerobic, saturated conditions may or may not exist during the evolution 
of the repository environment, the probabilistic analysis has also provided some insight into the early 
evolution of the canister corrosion behaviour. In particular, the results of the simulations suggest that:

•	 The canister surface is more likely to be in the active, rather than the passive, condition.

•	 The primary factors determining active versus passive behaviour are the pore-water pH and 
Cl− concentration.

•	 The canister temperature and the pore-water concentrations of sulphate and bicarbonate ions 
seem to have a minor effect on the active-passive behaviour.

•	 For passive conditions, pit initiation is possible but only at relatively early times when O2 is 
present to sufficiently ennoble ECORR.

•	 The duration of pitting varies from a few tens of days to a few years.

•	 Based on the pit-growth expressions used in the analysis, the maximum pit depth is of the order 
of 1 mm.

•	 However, the vast majority of pits are less than 100 µm deep, corresponding to the corrosion 
allowance for localised corrosion used for the SR-Site safety assessment.

Finally, as with all predictive models, the robustness of the predictions can be improved by improve-
ments in the quality of the input data, especially those relating to the time-dependent evolution of the 
environment at the canister surface.
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Appendix

Source Code
A1	 Source code
A1.1	 Localised corrosion model
A statistical approach to the localised corrosion of copper containers. At each time step, we track 
the pit growth. The status of the pit is −20 at initialization. Meaning no calculation took place. If 
the surface is active, it results in a pit value of −15 (no pitting). If it is passive, a pit may initiate. If 
ECORR < EB then return to main control with −10 pitgrowth. If ECORR > EB then the pit will propagate. 
The pit will continue to propagate as long as ECORR > ERP (−5 if ECORR < ERP) (time is tracked and is 
used to return total piting +1 for each timestep).

%function 

%The code can be run as a MATLAB script or called as a function 

localizedCorrosionCPU(time,logtimestep,KNN_num,mc,RUN,PitGrowthExp,PotentialExp,Class

ifierMethod,RegressMethod_Eb,RegressMethod_Erp) 

A1.2	 Program initialization
Clear variable space and close any open MATLAB figures to ensure a clean workspace.

% 

% 

clearvars; 

%Comment out this block if running as function 

close all; 

% 

% 

%Comment out this block if running as function 

rng('shuffle'); 

% initialize the random number generator in a new location 

% rng(1,'twister'); 

% for replication initiate the RNG in the same location 

A1.3	 Program constants and input initialization
Define constants and initialization of statistical variables.

% 

tic; %performance timing 

% 

%Comment out this block if running as function 

RUN = '\Run 1\'; 

mc = 100; 

 %to differentiate duplicate model runs 

time = 100; 

 %number of model realizations to run 

 %MIN: 1e-5 years; MAX 10,000 years (currently) 
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logtimestep = 10; 

KNN_num = 10; 

 %time steps in log time in increments 1/logtimestep 

 %number of KNN nearest neighbours 

 %if running ClassifierMethod = 0 below 

%Pit Growth Expression 

PitGrowthExp = 1;  % 0 -- constant: 5e-6 m/year 

 % 1 -- Denison and Romanoff (1950) #65 Chino soil 

 % 2 -- Denison and Romanoff (1950) #66 Mohave soil 

PotentialExp = 1; 

%Method for evaluating Eb and Erb potentials 

 % 0 -- Cong and Scully expressions for Eb and Erp 

 % 1 -- Training on UWO data 

%Method for Active/Passive data classification 

ClassifierMethod = 2;  % 0 -- orignial KNN implementation 

 % 1 -- Bagged Tree 

 % 2 -- Bagged Tree (Verified) 

 % 3 -- KNN Fine 

 % 4 -- KNN Fine (Verified) 

 % 5 -- KNN Medium 

 % 6 -- KNN Medium (Verified) 

 % 7 -- KNN Weighted 

 % 8 -- KNN Weighted (Verified) 

RegressMethod_Eb = 4;  % 0 -- original regression implementation 

 % 1 -- Bagged Tree 

 % 2 -- Bagged Tree (Verified) 

 % 3 -- Boosted Tree 

 % 4 -- Boosted Tree (Verified) 

 % 5 -- Complex Tree 

 % 6 -- Complex Tree (Verified) 

 % 7 -- FG SVM 

 % 8 -- FG SVM (Verified) 

 % 9 -- GPR Exp 

 %10 -- GPR Exp (Verified) 

 %11 -- Medium Tree 

 %12 -- Medium Tree (Verified) 

RegressMethod_Erp = 4;  % 0 -- original regression implementation 

 % 1 -- Bagged Tree 

 % 2 -- Bagged Tree (Verified) 

 % 3 -- Boosted Tree 

 % 4 -- Boosted Tree (Verified) 

 % 5 -- Complex Tree 

 % 6 -- Complex Tree (Verified) 

 % 7 -- FG SVM 

 % 8 -- FG SVM (Verified) 

 % 9 -- GPR Exp 

 %10 -- GPR Exp (Verified) 

 %11 -- Medium Tree 

% 

 %12 -- Medium Tree (Verified) 

% 

%Comment out this block if running as function 

if mc < 200 

%figures can become compute intensive to draw if mc is too large 

 INPUT_FIGURES = 1; % 1 to show figures; 0 to hide 
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 AP_FIGURES = 1; 

else 

 PRINT_FIGURES = 1; 

 AP_FIGURES = 0; 

 INPUT_FIGURES = 0; % 1 to show figures; 0 to hide 

end 

 PRINT_FIGURES = 0; 

%use a logarithmically spaced time step 

%initialize variables 

time_scale = 10.^((log10(1.0e-5):1/logtimestep:log10(time))); 

PitTime 

PitGrowth = zeros(mc,length(time_scale)) - 20; 

SO4 

 = zeros(mc,length(time_scale)); 

HCO3 

 = zeros(mc,length(time_scale)); 

CL 

 = zeros(mc,length(time_scale)); 

 = zeros(mc,1); 

%specify a maximum corrosion allowance for each realization 

CorrosionAllowance = 0.05;  %meters 

F  = 96487; 

R 

%Ecorr Calculation constants Eq 14 from King et al. 1995 

 %C/mol Faraday constant 

 = 8.314; 

n_a 

 %J/K/mol Gas Constant 

 = 1; 

n_c  = 4; 

 %number of anodic electrons 

E_a_0 

 %number of cathodic electrons 

 = -0.105; 

k_a 

 %V(SCE) standard potential 

 = 3.3e-4;  %dm4/mol/s 

k_2_r  = 1.42e-3;  %dm/s 

D_O2  = 1.7e-5;  %cm2/s 

 %cm2/s D_CuCl2 = 5.5e-6; 

%output folder location 

%the subfolder must exist or an eror will be thrown 

subfolder = strcat('.\Results\','time=',num2str(time),'\'); 

filename = strcat('mc',num2str(mc),' time',num2str(time), ... 

 ' logtimestep',num2str(logtimestep), ... 

 ' Pit',num2str(PitGrowthExp),... 

 ' Pot',num2str(PotentialExp), ... 

 ' ClaM', num2str(ClassifierMethod), ... 

 ' ReM_Eb', num2str(RegressMethod_Eb), ... 

 ' ReM_Erb', num2str(RegressMethod_Erp), ' Run',RUN(6)); 

A1.4	 Temperature data input
Two temperature data input types 1. Data from the entire repository a) All Dry b) All Wet 2. Data 
of three profiles and interpolated using a triangular distribution.

%1. Data from the entire repository 

%temperatureFile = 'TemperatureAllDry.xlsx'; extrap_temp = 54.247; 

rangeT = 'A2:AY6917'; 

sheetT = 1; 

temperatureFile = 'TemperatureAllWet.xlsx'; extrap_temp = 33.869; 

%import data 

T_Data = xlsread(temperatureFile,sheetT,rangeT); 

T_Data_times = xlsread(temperatureFile,sheetT,'A1:AY1'); %years 
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%interpolate temperature based on defined time_scale 

querypoints = time_scale; 

for i = 1:length(T_Data) 

interpTemp = zeros(length(T_Data),length(time_scale)); 

 interpTemp(i,:) = interp1(T_Data_times, T_Data(i,:), ... 

end 

 querypoints,'pchip',extrap_temp); 

%randomly sample a temperature profile for each realization 

T = zeros(mc,length(time_scale),'double'); 

Tsample = unidrnd(length(T_Data),[mc,1]); %samples to choose. 

%from all interpolated temperature profiles, choose the samples 

%instead of a loop over 1:1:mc, use vector form: 

T(1:1:mc,:) = interpTemp(Tsample(1:1:mc),:); 

% 2. Data from three profiles (this method has not been tested recently) 

% % spreadsheet data range and sheet number 

% rangeT = 'B5:E26'; 

% 

% sheetT = 1; 

% temperatureFile = 'TemperatureTD.xlsx'; 

% % for a single spreadsheet data import 

% T_Data = importfileTemperatureTD(temperatureFile,sheetT,rangeT); 

% % First interpolate temperature data 

% querypoints = time_scale; 

% interpLOW = interp1(T_Data.Time,T_Data.LOW,querypoints,'pchip',48.715); 

% interpMED = interp1(T_Data.Time,T_Data.MEDIUM,querypoints,'pchip',69.013); 

% T = zeros(mc,time); 

% interpHIGH = interp1(T_Data.Time,T_Data.HIGH,querypoints,'pchip',72.212); 

% 

% Tsample = rand(mc,1); %percentiles to choose. 

% for i = length(time_scale) 

% 

 %independent random deviates each time and mc 

%  % 

 %pdT(i) = makedist('Triangular', ... 

% 

 'a',interpLOW(i),'b',interpMED(i),'c',interpHIGH(i)); 

% 

% 

 %T(:,i) = random(pdT(i),mc,1); %temperature 

% 

% 

 %choose a specific random deviate and maintain it throughout time 

% 

 %but use different percentiles each mc 

 a = interpLOW(i); 

% 

 b = interpHIGH(i); 

% 

 c = interpMED(i); 

% 

 f = (c-a)/(b-a); 

% 

 for j = 1:1:mc 

% 

 if Tsample(j) < f 

%  else 

% 

 T(j,i) = a+sqrt(Tsample(j)*(b-a)*(c-a)); 

%  end 

%  end 

 T(j,i) = b-sqrt((1-Tsample(j))*(b-a)*(b-c)); 

% end 

if INPUT_FIGURES 

 f1 = figure; 

 ax1 = axes('Parent',f1); 

 xscale = time_scale; 

 log_xscale = [1e-5 time]; 

 plot(xscale,T','color',[0.2 0.2 0.2 0.2],'Parent',ax1); 

 xlabel('Time (yr)'); ylabel('Temperature (\circC)'); grid on; 
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 f2 = figure; 

 ax2 = axes('Parent',f2); 

 semilogx(xscale,T','color',[0.2 0.2 0.2 0.2],'Parent',ax2); 

 xlim(log_xscale); 

 xlabel('Time (yr)'); ylabel('Temperature (\circC)'); grid on; 

 if PRINT_FIGURES 

],'png'); 

 saveas(f1,[subfolder filename ' 01 ' temperatureFile(1:end-5) ' linear' 

],'png'); 

 end 

end 

 saveas(f2,[subfolder filename ' 02 ' temperatureFile(1:end-5) ' semilog' 

A1.5	 Active/passive data input
Import spreadsheet using function “importfile.m” generated from built-in MATLAB Import Data Tool.

rangeAP = 'A5:Q628'; %APData02.xlsx 

sheetAP = 1; 

% spreadsheet data import 

APData = importfile('APData02.xlsx',sheetAP,rangeAP); 

%response data for fitting 

active = APData.active; %1 for active; 0 for passive 

%Data for fitting (use concentrations, ph and temp) 

apdata = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T'}); 

%apply selected classification method 

switch ClassifierMethod 

 case 0 %original KNN implementation 

 %Use kNN algorithm 

 trainedClassifier = fitcknn(apdata,active,'NumNeighbors',KNN_num, ... 

 'Standardize' ,1, ... 

 'Distance','euclidean'); 

 Md2 = ExhaustiveSearcher(table2array(apdata)); 

 case 1 % Bagged Tree 

 trainingData = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T, APData.active,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','active'}); 

 [trainedClassifier, validationAccuracy] = 

trainClassifier_Bagged_Tree(trainingData); 

 case 2 % Bagged Tree (Verified) 

 trainingData = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T, APData.active,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','active'}); 

 [trainedClassifier, validationAccuracy] = 

 case 3 % KNN Fine 

trainClassifier_Bagged_Tree_Ver(trainingData) 

 trainingData = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T, APData.active,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','active'}); 

 [trainedClassifier, validationAccuracy] = 

trainClassifier_KNN_Fine(trainingData); 
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 case 4 % KNN Fine (Verified) 

 trainingData = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T, APData.active,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','active'}); 

 [trainedClassifier, validationAccuracy] = 

 case 5 % KNN Med 

trainClassifier_KNN_Fine_Ver(trainingData); 

 trainingData = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T, APData.active,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','active'}); 

 [trainedClassifier, validationAccuracy] = 

trainClassifier_KNN_Medium(trainingData); 

 case 6 % KNN Med (Verified) 

 trainingData = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T, APData.active,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','active'}); 

 [trainedClassifier, validationAccuracy] = 

trainClassifier_KNN_Medium_Ver(trainingData); 

 case 7 % KNN Weighted 

 trainingData = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T, APData.active,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','active'}); 

 [trainedClassifier, validationAccuracy] = 

trainClassifier_KNN_Weighted(trainingData); 

 case 8 % KNN Weighted (Verified) 

 trainingData = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 APData.pH, APData.T, APData.active,... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','active'}); 

 [trainedClassifier, validationAccuracy] = 

end 

trainClassifier_KNN_Weighted_Ver(trainingData); 

%Data for Eb and Erp fitting (use concentrations, ph and temp) 

ebdata_raw = table( APData.Cl, APData.SO4, APData.HCO3, ... 

 ...  APData.pH, APData.T, APData.Eb, 

%remove NaN values 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','Eb'}); 

ebdata_nonan = ebdata_raw(all(~isnan(table2array(ebdata_raw)),2),:); 

erpdata_raw = table( APData.Cl, APData.SO4, APData.HCO3,... 

 ...  APData.pH, APData.T, APData.Erp, 

%remove NaN values 

 'VariableNames',{'Cl','SO4','HCO3','pH','T','Erp'}); 

erpdata_nonan = erpdata_raw(all(~isnan(table2array(erpdata_raw)),2),:); 

%train selected regression method 

 case 0 

switch RegressMethod_Eb 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 1 

trainRegressionModel_Eb_FG_SVM(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 2 

trainRegressionModel_Eb_Bagged_Tree(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 3 

trainRegressionModel_Eb_Bagged_Tree_Ver(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 
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 case 4 

trainRegressionModel_Eb_Boosted_Tree(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 5 

trainRegressionModel_Eb_Boosted_Tree_Ver(ebdata_nonan) 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 6 

trainRegressionModel_Eb_Complex_Tree(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 7 

trainRegressionModel_Eb_Complex_Tree_Ver(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 8 

trainRegressionModel_Eb_FG_SVM(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 9 

trainRegressionModel_Eb_FG_SVM_Ver(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 10 

trainRegressionModel_Eb_GPR_Exp(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 11 

trainRegressionModel_Eb_GPR_Exp_Ver(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

 case 12 

trainRegressionModel_Eb_Medium_Tree(ebdata_nonan); 

 [trainedModel_Eb, validationRMSE_Eb] = 

end 

trainRegressionModel_Eb_Medium_Tree_Ver(ebdata_nonan); 

 case 0 

switch RegressMethod_Erp 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 1 

trainRegressionModel_Erp_FG_SVM(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 2 

trainRegressionModel_Erp_Bagged_Tree(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 3 

trainRegressionModel_Erp_Bagged_Tree_Ver(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 4 

trainRegressionModel_Erp_Boosted_Tree(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 5 

trainRegressionModel_Erp_Boosted_Tree_Ver(erpdata_nonan) 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 6 

trainRegressionModel_Erp_Complex_Tree(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 7 

trainRegressionModel_Erp_Complex_Tree_Ver(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 8 

trainRegressionModel_Erp_FG_SVM(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

trainRegressionModel_Erp_FG_SVM_Ver(erpdata_nonan); 
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 case 9 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 10 

trainRegressionModel_Erp_GPR_Exp(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 11 

trainRegressionModel_Erp_GPR_Exp_Ver(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

 case 12 

trainRegressionModel_Erp_Medium_Tree(erpdata_nonan); 

 [trainedModel_Erp, validationRMSE_Erp] = 

end 

trainRegressionModel_Erp_Medium_Tree_Ver(erpdata_nonan); 

A1.6	 Import chloride concentration data
Data is assumed to be in mol/l Import spreadsheet using function “importChlorideCDF.m” generated 
from built-in MATLAB Import Data Tool.

% spreadsheet data range and sheet number 

rangeT = 'A2:D44'; 

sheetT = 1; 

% spreadsheet data import 

ChlorideCDF = importChlorideCDF('ChlorideCDF.xlsx',sheetT,rangeT); 

%take from table input the chloride concentration data 

%fit a CDF to the data 

cdf = ChlorideCDF.Clmoll; %Chloride concentration [mol/l] 

[percentile,cl_conc,~,~] = ecdf(cdf); 

%add interpolation data to dataset 

percentile_interp = 0:0.001:1; 

CL_cdf = interp1(percentile,cl_conc,percentile_interp); 

%choose chloride concentration random percentiles 

for i = 1:1:mc 

clsample = rand(mc,1); %percentiles to choose. 

 %choose the chloride sample closest to each random percentile 

 %1. filter all values less than clsample 

 %2. then take the max 

 %3. the results is the array value closest to clsample (from the left) 

end 

if INPUT_FIGURES 

 CL(i) = max(CL_cdf(percentile_interp<=clsample(i))); 

 f3 = figure; 

 ax3 = axes('Parent', f3); 

 cdfplot(cdf); 

 hold on; 

 %plot(cl_conc,percentile) 

 hold off; 

 plot(CL_cdf,percentile_interp,'Parent',ax3) 

 title(''); xlabel('Cl^{-} (mol/L)'); ylabel('CDF - Probability'); 

 legend('Chloride Input Data','Interpolated Chloride Data','Location','southeast') 
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 f4 = figure; 

 ax4 = axes('Parent', f4); 

 histogram(CL,'Parent',ax4); 

 xlabel('Cl^{-} (mol/L)'); ylabel('Frequency'); 

 if PRINT_FIGURES 

 saveas(f3,[subfolder filename ' 03 Chloride CDF' ],'png'); 

 end 

end 

 saveas(f4,[subfolder filename ' 04 Chloride Histogram' ],'png'); 

A1.7	 Generate environmental parameters
Determine RH, pH, SO4

2−, HCO3
−, O2.

pHmin  =  7.0; 

%initialize a triangular probability distribution for pH 

pHpeak =  7.4; 

pdpH 

pHmax  = 10.0; 

pH 

 = makedist('Triangular','a',pHmin,'b',pHpeak,'c',pHmax); 

%randomly select pH for each realization 

 = random(pdpH,mc,1); 

OH 

%calculate OH from pH 

 = 1e-14 * 10.^pH; 

if INPUT_FIGURES 

 f5 = figure; 

 ax5 = axes('Parent', f5); 

 plotrange = pHmin: 0.001 : pHmax; 

 plot(plotrange,pdf(pdpH,plotrange), 'Parent', ax5) 

 xlabel('pH'); ylabel('Probability'); 

 f6 = figure; 

 ax6 = axes('Parent', f6); 

 yyaxis left 

 histogram(pH, 'Parent', ax6); 

 hold on; 

 xlabel('pH'); ylabel('Frequency'); 

 yyaxis right 

 ylabel('Probability'); 

 plot(plotrange,pdf(pdpH,plotrange), 'LineWidth', 2, 'Parent', ax6) 

 if PRINT_FIGURES 

 saveas(f5,[subfolder filename ' 05 pH Distribution' ],'png'); 

 end 

end 

 saveas(f6,[subfolder filename ' 06 pH Histogram' ],'png'); 

%Generate SO4 and HCO3 profiles as a function of temperature 

i = 1:1:mc; 

SO4(i,:) = 

%instead of a loop over 1:1:mc, use vector form 

 ... 

- 1.26901382E-12 * T(i,:).^6 + 3.97938117E-10 * T(i,:).^5 ...

- 4.74084833E-8  * T(i,:).^4 + 2.68766739E-6  * T(i,:).^3 ...

- 7.73780299E-5  * T(i,:).^2 + 1.13158668E-3  * T(i,:)

+ 7.89962675E-3;

HCO3(i,:) =  - 5.10348861E-10 * T(i,:).^3 + 1.33530950E-7  * T(i,:).^2 ... 
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- 1.33530950E-5  * T(i,:) + 6.33530950E-4;

if INPUT_FIGURES 

 f7 = figure; 

 ax7a = axes('Parent',f7); 

 ax7b = axes('Parent',f7); 

 subplot(1,2,1,ax7a); 

 f7tr = 10:1:95; 

 plot(f7tr,- 1.26901382E-12 * f7tr.^6 + 3.97938117E-10 * f7tr.^5 ... 

- 4.74084833E-8  * f7tr.^4 + 2.68766739E-6  * f7tr.^3 ...

 ... - 7.73780299E-5  * f7tr.^2 + 1.13158668E-3  * f7tr

+ 7.89962675E-3, 'Parent', ax7a)

 subplot(1,2,2,ax7b); 

 xlabel('Temperature (\circC)'); ylabel('SO_{4} (mol/L)'); grid on; 

- 1.33530950E-5  * f7tr

 plot(f7tr,- 5.10348861E-10 * f7tr.^3 + 1.33530950E-7  * f7tr.^2 ... 

+ 6.33530950E-4, 'Parent', ax7b)

 pos = get(f7,'position'); 

 xlabel('Temperature (\circC)'); ylabel('HCO_{3} (mol/L)'); grid on; 

 f8 = figure; 

 set(f7,'position',[pos(1) pos(2) pos(3)*1.5 pos(4)]); 

 ax8a = axes('Parent',f8); 

 ax8b = axes('Parent',f8); 

 subplot(1,2,1,ax8a) 

 plot(xscale,SO4','color',[0.2 0.2 0.2 0.2], 'Parent', ax8a); 

 subplot(1,2,2,ax8b) 

 xlabel('Time (yr)'); ylabel('SO_{4} (mol/L)'); grid on; 

 semilogx(xscale,SO4','color',[0.2 0.2 0.2 0.2], 'Parent', ax8b); 

 xlim(log_xscale); 

 xlabel('Time (yr)'); ylabel('SO_{4} (mol/L)'); grid on; 

 pos = get(f8,'position'); 

 f9 = figure; 

 set(f8,'position',[pos(1) pos(2) pos(3)*1.5 pos(4)]); 

 ax9a = axes('Parent',f9); 

 ax9b = axes('Parent',f9); 

 subplot(1,2,1,ax9a) 

 plot(xscale,HCO3','color',[0.2 0.2 0.2 0.2], 'Parent', ax9a); 

 subplot(1,2,2,ax9b) 

 xlabel('Time (yr)'); ylabel('HCO_{3} (mol/L)'); grid on; 

 semilogx(xscale,HCO3','color',[0.2 0.2 0.2 0.2], 'Parent', ax9b); 

 xlim(log_xscale); 

 xlabel('Time (yr)'); ylabel('HCO_{3} (mol/L)'); grid on; 

 pos = get(f9,'position'); 

 if PRINT_FIGURES 

 set(f9,'position',[pos(1) pos(2) pos(3)*1.5 pos(4)]); 

 saveas(f7,[subfolder filename ' 07 SO4 HCO3 Input' ],'png'); 

 saveas(f8,[subfolder filename ' 08 SO4 Concentrations' ],'png'); 

 end 

end 

 saveas(f9,[subfolder filename ' 09 HCO3 Concentrations' ],'png'); 

%inital oxygen concentration 

O2_sat = 2.5e-4; %mol/L 

%oxygen decrease limit 

O2_999 = 0.999; 

%uniform alpha distribution 
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O2_decay_5weeks = -1*log(1-O2_999)/(5/52.1429); % 5 weeks (in years) 

O2_decay_5years = -1*log(1-O2_999)/(5); % 5 years 

O2_decay = (unifrnd(O2_decay_5years,O2_decay_5weeks,[mc,1])); 

%log uniform alpha distribution (not used in final code) 

% Log_5weeks = log10(O2_decay_5weeks); 

% Log_5years = log10(O2_decay_5years); 

% 

if INPUT_FIGURES 

% 

% O2_decay_log = 10.^(unifrnd(Log_5years,Log_5weeks,[mc,1])); 

 f10 = figure; 

% 

 ax10a = axes('Parent',f10); 

% 

 ax10b = axes('Parent',f10); 

% 

 subplot(1,2,1,ax10a); 

% 

 histogram(O2_decay_log, 'Parent', ax10a); 

% 

% 

 xlabel('Alpha (yr^{-1})'); ylabel('Frequency'); 

 subplot(1,2,2,ax10b); 

% 

 histogram(-(1./O2_decay_log).*log(.001), 'Parent', ax10b); 

% 

% 

 xlabel('Time to 99.9% Reduction (yr)'); ylabel('Frequency'); 

 pos = get(f10,'position'); 

 f11 = figure; 

 set(f10,'position',[pos(1) pos(2) pos(3)*1.5 pos(4)]); 

 ax11a = axes('Parent',f11); 

 ax11b = axes('Parent',f11); 

 subplot(1,2,1,ax11a); 

 histogram(O2_decay, 'Parent', ax11a); 

 xlabel('Alpha (yr^{-1})'); ylabel('Frequency'); 

 subplot(1,2,2,ax11b); 

 histogram(-(1./O2_decay).*log(.001), 'Parent', ax11b); 

 xlabel('Time to 99.9% Reduction (yr)'); ylabel('Frequency'); 

 pos = get(f11,'position'); 

 f13 = figure; 

 set(f11,'position',[pos(1) pos(2) pos(3)*1.5 pos(4)]); 

 ax13a = axes('Parent',f13); 

 ax13b = axes('Parent',f13); 

 subplot(1,2,1,ax13a) 

 O2 = O2_sat .* exp(-(time_scale).*O2_decay); 

 plot(time_scale,O2','color',[0.2 0.2 0.2 0.2], 'Parent', ax13a); 

 xlabel('Years'); ylabel('O_2 mol/L'); grid on; 

 linear_xscale = [0. 3]; 

 xlim(linear_xscale); 

 subplot(1,2,2,ax13b) 

 semilogx(time_scale,O2','color',[0.2 0.2 0.2 0.2], 'Parent', ax13b); 

 xlabel('Years'); ylabel('O_2 mol/L'); grid on; 

 O2_log_xscale = [1e-5 10]; 

 xlim(O2_log_xscale); 

 pos = get(f13,'position'); 

 if PRINT_FIGURES 

 set(f13,'position',[pos(1) pos(2) pos(3)*1.5 pos(4)]); 

 %saveas(f10,[subfolder filename ' 10 Log Uniform Oxygen Decay' ],'png'); 

 saveas(f11,[subfolder filename ' 11 Uniform Oxygen Decay' ],'png'); 

 end 

end 

 saveas(f13,[subfolder '13 Oxygen Concentration (uniform) ' filename],'png'); 

%only used if PotentialExp == 0 (Cong and Scully analysis) 
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%choose Eb and Erb constants based on normal distributions 

Eb_const  = normrnd( 1.11  ,0.061,[mc,1]); 

Erp_const = normrnd(-0.0925,0.005,[mc,1]); 

%choose pit growth expression A and n values 

if PitGrowthExp == 0 %0 -- constant: 5e-6 m/year 

 pgeA = ones(mc,1) * 5e-6; 

 pgeN = ones(mc,1) * -10; %marker to distinguish pit growth method 

elseif PitGrowthExp == 1 %Denison and Romanoff (1950) #65 Chino soil 

 pgeA = normrnd( 89.2e-6,46.0e-6,[mc,1]); 

 pgeN = normrnd(  0.57  , 0.26  ,[mc,1]); 

 %ensure no negative numbers chosen 

 pgeA(pgeA < 0) = 1e-7; 

 pgeN(pgeN < 0) = 1e-7; 

elseif PitGrowthExp == 2 %Denison and Romanoff (1950) #66 Mohave soil 

 pgeA = normrnd(188.0e-6,41.0e-6,[mc,1]); 

 pgeN = normrnd(  0.12  , 0.11  ,[mc,1]); 

 %ensure no negative numbers chosen 

 pgeA(pgeA < 0) = 1e-9; 

end 

toc; 

 pgeN(pgeN < 0) = 1e-7; 

A1.8	 Overall Flow Control
In each iteration of the model, mc, run the code for determined number of years, time.

tic; 

parfor p = 1:1:mc 

%for p = 1:1:mc %for single threaded testing 

 t = T(p,:); 

 %use a sliced variable for parfor efficiency 

 so4 = SO4(p,:); 

 hco3 = HCO3(p,:); 

 pittime 

 pitgrowth = zeros(1,length(time_scale)) - 20; 

 i = 1; 

 = zeros(1,length(time_scale)); 

 while i <= length(time_scale) 

... 

 [pitgrowth(i),i_new] = ENV(trainedClassifier,i,t, pH(p,1),OH(p,1),CL(p),so4, 

 hco3,O2_sat,O2_decay(p),Eb_const(p),Erp_const(p),time_scale,... 

 pgeA(p),pgeN(p),PotentialExp,trainedModel_Eb, ... 

 trainedModel_Erp, ClassifierMethod); 

 pittime(i) = time_scale(i_new) - time_scale(i); 

 if sum(pitgrowth(pitgrowth>0)) > CorrosionAllowance 

 %exit the current simulation 

 end 

 i_new = length(time_scale); 

 i = i_new + 1; 

 end 

 PitGrowth(p,:) = pitgrowth; 

 PitTime(p,:) = pittime; 

end 

toc; 
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A1.9	 Results

tic; 

filename_ext = '.xlsx'; 

filename_time = strrep(datestr(datetime('now')),':',''); 

 ... 

xl_filename = strcat(subfolder,filename,' output ',filename_time,filename_ext); 

A = {'Constants','Value';'Realizations',mc;'KNN_num',KNN_num; 

 'Total Time (yr)',time;'Num. Time Steps',length(time_scale);... 

 'RUN Number',RUN(6)}; 

 'Pit-growth law',PitGrowthExp;'Potential Exp.',PotentialExp;... 

xlRange = 'D1'; 

%output headers 

xlswrite(xl_filename,A,1,xlRange); 

A = {'Time Series (yr)',''}; 

xlRange = 'B1'; 

%output headers 

xlRange = 'B2'; 

xlswrite(xl_filename,A,1,xlRange); 

%output time_scale 

xlswrite(xl_filename,time_scale',1,xlRange); 

num_init = nnz(PitGrowth==-20); 

num_active = nnz(PitGrowth==-15); 

num_passive_Ecorr_lessthan_Eb = nnz(PitGrowth==-10); 

num_passive_and_break_down = nnz(PitGrowth==-5); 

num_pitgrowth = nnz(PitGrowth>0) 

A = { 

fraction_pitting = num_pitgrowth/mc 

 'Simulation Results for Generated Env Conditions',''; ... 

 'Total Number of Active Conditions',num_active; ... 

 'Total Number of Passive Conditions 

(Ecorr<Eb)',num_passive_Ecorr_lessthan_Eb; ... 

 'Total Number of Breakdown Events (but 

Ecorr<Erp)',num_passive_and_break_down; ... 

 'Total Number of Piting Initiation Events',num_pitgrowth; ... 

 'Total Fraction Pitting Initiation',fraction_pitting; ... 

xlRange = 'D9'; 

 'Total Number of Piting events (after initiations)',num_init}; 

%output active/passive data 

xlswrite(xl_filename,A,1,xlRange); 

NUM_INIT = zeros(mc,1); 

NUM_ACTIVE = zeros(mc,1); 

NUM_PASSIVE_ECORR_LESSTHAN_EB = zeros(mc,1); 

NUM_PASSIVE_AND_BREAK_DOWN = zeros(mc,1); 

NUM_PITGROWTH = zeros(mc,1); 

R_PITDEPTH = zeros(mc,1); 

for i = 1:mc 

 NUM_INIT(i) = nnz(PitGrowth(i,:)==-20); 

 NUM_ACTIVE(i) = nnz(PitGrowth(i,:)==-15); 

 NUM_PASSIVE_ECORR_LESSTHAN_EB(i) = nnz(PitGrowth(i,:)==-10); 

 NUM_PASSIVE_AND_BREAK_DOWN(i) = nnz(PitGrowth(i,:)==-5); 

 NUM_PITGROWTH(i) = nnz(PitGrowth(i,:)>0); 
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end 

A = { 

 R_PITDEPTH(i) = sum(PitGrowth(i,PitGrowth(i,:)>0)); 

 'Number of realizations with only active 

condtions',nnz(NUM_ACTIVE==length(time_scale)); ... 

 'Number of realizations with some active condtions',nnz(NUM_ACTIVE>0); ... 

 'Number of realizations with no active condtions',nnz(NUM_ACTIVE==0); ... 

 'Number of realizations with Passive conditions (but 

Ecorr<Eb)',nnz(NUM_PASSIVE_ECORR_LESSTHAN_EB>0); ... 

 'Number of realizations with Breakdown Events (but 

Ecorr<Erp)',nnz(NUM_PASSIVE_AND_BREAK_DOWN>0); ... 

xlRange = 'D17'; 

 'Number of realizations with Pitting Events',nnz(NUM_PITGROWTH>0)}; 

%output active/passive data 

A = { 

xlswrite(xl_filename,A,1,xlRange); 

 'Realization Number','Start Time (yr)','Duration (yr)','Depth of each pit 

xlRange = 'D29'; 

(m)','','Realization Number','Total Depth (m)'}; 

xlswrite(xl_filename,A,1,xlRange); 

%if there are pits, output time of pitting events 

if ~isempty(PitTime(PitTime>0)) 

 [row,col,v] = find(PitTime); 

 xlswrite(xl_filename,row,1,'D30'); 

 xlswrite(xl_filename,time_scale(col)',1,'E30'); 

end 

 xlswrite(xl_filename,v,1,'F30'); 

%if there are pits, output pit depths 

if ~isempty(PitGrowth(PitGrowth>0)) 

 xlswrite(xl_filename,PitGrowth(PitGrowth>0),1,'G30'); 

 [row1,col1,v1]= find(R_PITDEPTH); 

 %PitDepth Stats 

 threshold100mu = v1 <= 1e-4; 

 numThreshold100mu = numel(threshold100mu(threshold100mu>0)); 

 threshold1mm = v1 >= 1e-3; 

 A = { 

 numThreshold1mm = numel(threshold1mm(threshold1mm>0)); 

 'Number of realizations Pit Depth > 100 microns',numThreshold100mu; ... 

 'Number of realizations Pit Depth > 1 mm',numThreshold1mm; ... 

 'Max Pit Depth (m)', max(v1); ... 

 'Mean Pit Depth (m)', mean(v1); ... 

 'Pit Depth Standard Deviation (m)',std(v1)}; 

 xlswrite(xl_filename,A,1,'D23'); 

 xlswrite(xl_filename,row1,1,'I30'); 

end 

 xlswrite(xl_filename,v1,1,'J30'); 

if AP_FIGURES 

 if  ClassifierMethod == 0 

 parfor p = 1:1:mc 

 IDX_KNN = zeros(mc,length(time_scale),KNN_num); 

 idx_knn = zeros(length(time_scale),KNN_num); 

 %variable slicing 

 t = T(p,:); 

 so4 = SO4(p,:); 

 hco3 = HCO3(p,:); 

 for i = 1:1:length(time_scale) 
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 idx_knn(i,:) = knnsearch(Md2,[CL(p) so4(i) hco3(i) pH(p,1) 

 end 

t(i)],'k',KNN_num,'Distance','seuclidean'); 

 end 

 IDX_KNN(p,:,:) = idx_knn; 

 end 

 Active_Predict = zeros(mc,length(time_scale)); 

 data_p_0 = cell(mc,1); 

 data_p_1 = cell(mc,1); 

 parfor p = 1:1:mc 

 %variable slicing 

 t = T(p,:); 

 so4 = SO4(p,:); 

 hco3 = HCO3(p,:); 

 o2 = O2(p,:); 

 oh = OH(p,:); 

 apdata_predict = zeros(length(time_scale),11); 

 active_predict = zeros(length(time_scale),1); 

 switch ClassifierMethod 

 case 0 

 for i = 1:1:length(time_scale) 

hco3(i) pH(p,1) t(i)]); 

 end 

 active_predict(i) = predict(trainedClassifier, [CL(p) so4(i) 

 otherwise 

 for i = 1:1:length(time_scale) 

 active_predict(i) = 

trainedClassifier.predictFcn(table(CL(p),so4(i),hco3(i),pH(p,1),t(i), ... 

 end 

 end 

'VariableNames',{'Cl','SO4','HCO3','pH','T'})); 

 apdata_predict(:,1) = CL(p); 

 apdata_predict(:,2) = so4; 

 apdata_predict(:,3) = hco3'; 

 apdata_predict(:,4) = pH(p,1); 

 apdata_predict(:,5) = t; 

 apdata_predict(:,6) = E_a_0 + 

(2.3*R/F).*log10((k_2_r*n_c*D_O2.*o2)./((k_a*n_a*D_CuCl2).*(CL(p).^2))).*(t+273.15); 

 apdata_predict(:,7) = Eb_const(p) + (0.116 * log10(oh)) + (0.197 .* 

log10(hco3)) - (0.130  .* log10(so4+CL(p))); 

 apdata_predict(:,8) = Erp_const(p) + 0.00373 * log10(oh) - 0.0139 .* 

log10(hco3) - 0.0566 * log10(CL(p)); 

 apdata_predict(:,9) = time_scale; 

 apdata_predict(:,10) = 

', ... 

trainedModel_Eb.predictFcn(table(apdata_predict(:,1),so4',hco3',apdata_predict(:,4),t

 'VariableNames',{'Cl','SO4','HCO3','pH','T'})); 

 apdata_predict(:,11) = 

t', ... 

trainedModel_Erp.predictFcn(table(apdata_predict(:,1),so4',hco3',apdata_predict(:,4),

 'VariableNames',{'Cl','SO4','HCO3','pH','T'})); 

 data_p_0{p,1} = apdata_predict(active_predict == 0,:); 

 data_p_1{p,1} = apdata_predict(active_predict == 1,:); 
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 end 

 Active_Predict(p,:) = active_predict; 

 data_0 = table2array(apdata(active == 0,:)); 

 data_1 = table2array(apdata(active == 1,:)); 

 f24 = figure; 

 %Temp(5) vs pH(4) vs Chloride(1) AP plot 

 ax24 = axes('Parent', f24); 

 for i = 1:1:mc 

'Parent', ax24); 

 hold on; 

 plot3(data_p_1{i,1}(:,5),data_p_1{i,1}(:,4),data_p_1{i,1}(:,1), ['b' '.'], 

'Parent', ax24); 

 end 

 plot3(data_p_0{i,1}(:,5),data_p_0{i,1}(:,4),data_p_0{i,1}(:,1), ['r' '.'], 

 x1 = xlim; y1 = ylim; z1 = zlim; 

 plot3(data_1(:,5),data_1(:,4),data_1(:,1), ['b' 'o'], 'Parent', ax24); 

 hold off; 

 plot3(data_0(:,5),data_0(:,4),data_0(:,1), ['r' 'o'], 'Parent', ax24); 

 xlim(x1); ylim(y1); zlim(z1); axis square; grid on; 

 xlabel('Temperature (\circC)'); ylabel('pH'); zlabel('Cl^{-} (mol/L)') 

 f25 = copyobj(gcf,0); view([45 30]); 

 f26 = figure; 

 %Temp(5) vs pH(4) vs SO4(2) AP plot 

 ax26 = axes('Parent', f26); 

 for i = 1:1:mc 

'Parent', ax26); 

 hold on; 

 plot3(data_p_1{i,1}(:,5),data_p_1{i,1}(:,4),data_p_1{i,1}(:,2), ['b' '.'], 

 end 

'Parent', ax26); 

 plot3(data_p_0{i,1}(:,5),data_p_0{i,1}(:,4),data_p_0{i,1}(:,2), ['r' '.'], 

 x1 = xlim; y1 = ylim; z1 = zlim; 

 plot3(data_1(:,5),data_1(:,4),data_1(:,2), ['b' 'o'], 'Parent', ax26); 

 hold off; 

 plot3(data_0(:,5),data_0(:,4),data_0(:,2), ['r' 'o'], 'Parent', ax26); 

 xlim(x1); ylim(y1); zlim(z1); axis square; grid on; 

 xlabel('Temperature (\circC)'); ylabel('pH'); zlabel('SO_4 (mol/L)'); 

 f27 = copyobj(gcf,0); view([45 30]); 

 f28 = figure; 

 %Temp(5) vs pH(4) vs HCO3(3) AP plot 

 ax28 = axes('Parent', f28); 

 for i = 1:1:mc 

 %figure(R1); 

'Parent', ax28); 

 hold on; 

 plot3(data_p_1{i,1}(:,5),data_p_1{i,1}(:,4),data_p_1{i,1}(:,3), ['b' '.'], 

'Parent', ax28); 

 end 

 plot3(data_p_0{i,1}(:,5),data_p_0{i,1}(:,4),data_p_0{i,1}(:,3), ['r' '.'], 

 x1 = xlim; y1 = ylim; z1 = zlim; 

 plot3(data_1(:,5),data_1(:,4),data_1(:,3), ['b' 'o'], 'Parent', ax28); 

 hold off; 

 plot3(data_0(:,5),data_0(:,4),data_0(:,3), ['r' 'o'], 'Parent', ax28); 
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 xlim(x1); ylim(y1); zlim(z1); axis square; grid on; 

 xlabel('Temperature (\circC)'); ylabel('pH'); zlabel('HCO_3 (mol/L)'); 

 f29 = copyobj(gcf,0); view([45 30]); 

 %Time(9) vs Voltage AP plot 

 f30 = figure; 

 ax30 = axes('Parent', f30); 

 for i = 1:1:mc 

 hold on; 

 semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,6), ['b' '.'], 'Parent', ax30); 

 end 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,6), ['r' 's'], 'Parent', ax30); 

 %dummy plot to correct legend 

 h = zeros(2, 1); 

 h(1) = semilogx(0,0,['b' '.']); 

 hold off; 

 h(2) = semilogx(0,0,['r' 's']); 

 xlim([1e-3 time]); ylim([-0.5 0.2]); grid on; 

 xlabel('Time (yr^{-1})'); ylabel('E_{corr} (V_{SCE})'); 

 legend([h(1),h(2)],'E_{corr} Active', 'E_{corr} Passive', ... 

 'Location','eastoutside'); 

 pos = get(gcf,'position'); 

 set(gcf,'position',[pos(1:2)/1.5 pos(3)*1.5 pos(4)*1]); 

 %Time(9) vs Voltage AP plot 

 f31 = figure; 

 ax31 = axes('Parent', f31); 

 for i = 1:1:mc 

 %hold on; 

 %semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,7), ['b' '+'], 'Parent', ax31); 

 %semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,8), ['b' 'x'], 'Parent', ax31); 

 hold on; 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,7), ['k' '.'], 'Parent', ax31); 

 end 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,8), ['r' 'o'], 'Parent', ax31); 

 %dummy plot to correct legend 

 h = zeros(2, 1); 

 %h(1) = semilogx(0,0,['b' '+']); 

 %h(2) = semilogx(0,0,['b' 'x']); 

 h(1) = semilogx(0,0,['k' '.']); 

 hold off; 

 h(2) = semilogx(0,0,['r' 'o']); 

 xlim([1e-3 time]);  grid on; set(gca,'XScale','log'); 

 legend([h(1),h(2)], ... 

 xlabel('Time (yr^{-1})'); ylabel('Cong and Scully Eq. (V_{SCE})'); 

 'E_b Passive','E_{rp} Passive', 'Location','eastoutside'); 

 % 

 %legend([h(1),h(2),h(3),h(4)],'E_b Active', 'E_{rp} Active', ... 

 'E_b Passive','E_{rp} Passive', 'Location','eastoutside'); 

 pos = get(gcf,'position'); 

 set(gcf,'position',[pos(1:2)/1.5 pos(3)*1.5 pos(4)*1]); 

 %Time(9) vs Voltage AP plot 

 f32 = figure; 

 ax32 = axes('Parent', f32); 

 for i = 1:1:mc 

 %hold on; 

 %semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,7), ['b' '+'], 'Parent', ax32); 

 %semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,8), ['b' 'x'], 'Parent', ax32); 
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 hold on; 

 semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,6), ['b' '.'], 'Parent', ax32); 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,7), ['k' '.'], 'Parent', ax32); 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,8), ['r' 'o'], 'Parent', ax32); 

 end 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,6), ['r' 's'], 'Parent', ax32); 

 %dummy plot to correct legend 

 h = zeros(4, 1); 

 %h(1) = semilogx(0,0,['b' '+']); 

 %h(2) = semilogx(0,0,['b' 'x']); 

 h(1) = semilogx(0,0,['b' '.']); 

 h(2) = semilogx(0,0,['k' '.']); 

 h(3) = semilogx(0,0,['r' 'o']); 

 hold off; 

 h(4) = semilogx(0,0,['r' 's']); 

 xlim([1e-3 time]); ylim([-0.5 0.2]); grid on; 

 xlabel('Time (yr^{-1})'); ylabel('Cong and Scully Eq. (V_{SCE})'); 

 % 

 %legend([h(1),h(2),h(3),h(4),h(5),h(6)],'E_b Active', 'E_{rp} Active', ... 

 'E_{corr} Active','E_b Passive','E_{rp} Passive', 'E_{corr} 

Passive','Location','eastoutside'); 

 legend([h(1),h(2),h(3),h(4)], ... 

 'E_{corr} Active','E_b Passive','E_{rp} Passive', 'E_{corr} 

Passive','Location','eastoutside'); 

 pos = get(gcf,'position'); 

 set(gcf,'position',[pos(1:2)/1.5 pos(3)*1.5 pos(4)*1]); 

 %Time(9) vs Temperature(5) AP plot 

 f33 = figure; 

 ax33 = axes('Parent', f33); 

 for i = 1:1:mc 

 hold on; 

 semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,5), ['b' '.'], 'Parent', ax33); 

 end 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,5), ['r' 'o'], 'Parent', ax33); 

 %dummy plot to correct legend 

 h = zeros(2, 1); 

 h(1) = semilogx(0,0,['b' '.']); 

 hold off; 

 h(2) = semilogx(0,0,['r' 'o']); 

 if time <= 1e-2 xmin = time/100; else xmin = 1e-2; end 

 xlim([xmin time]); grid on; 

 xlabel('Time (yr^{-1})'); ylabel('T (\circC)'); 

 pos = get(gcf,'position'); 

 legend([h(1),h(2)],'Active', 'Passive', 'Location','eastoutside'); 

 set(gcf,'position',[pos(1:2)/1.5 pos(3)*1.5 pos(4)*1]); 

 f34 = figure; 

 %2D matrix of plots for all components of apdata 

 varNames = {'Cl^{-}'; 'SO_4'; 'HCO_3'; 'pH'; 'Temperature'}; 

 gplotmatrix(table2array(apdata),[],active,['r' 'b'],'o.',[4 

8],false,[],varNames,varNames); 

 pos = get(gcf,'position'); 

 title('UWO Data: Active - Closed Blue Circles; Passive - Open Red Circles'); 

 set(gcf,'position',[pos(1:2)/3 pos(3)*2 pos(4)*2]); 

 f35 = figure; 

 %2D matrix of plots for all components of genereated data and predicted 

 APdata_predict = zeros(length(time_scale)*mc,6); 
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 for i = 1:mc 

 Active_Predict_Vector = zeros(length(time_scale)*mc,1); 

 APdata_predict((i-1)*length(time_scale)+1:i*length(time_scale),1) = CL(i); 

 APdata_predict((i-1)*length(time_scale)+1:i*length(time_scale),2) = SO4(i,:); 

HCO3(i,:); 

 APdata_predict((i-1)*length(time_scale)+1:i*length(time_scale),3) = 

 APdata_predict((i-1)*length(time_scale)+1:i*length(time_scale),4) = pH(i); 

 APdata_predict((i-1)*length(time_scale)+1:i*length(time_scale),5) = T(i,:); 

time_scale; 

 APdata_predict((i-1)*length(time_scale)+1:i*length(time_scale),6) = 

 end 

Active_Predict(i,:); 

 Active_Predict_Vector((i-1)*length(time_scale)+1:i*length(time_scale),1) = 

 varNames = {'Cl^{-}'; 'SO_4'; 'HCO_3'; 'pH'; 'Temperature';'Time'}; 

6],false,[],varNames,varNames); 

 gplotmatrix(APdata_predict,[],Active_Predict_Vector,['r' 'b'],'o.',[4 

Circles'); 

 title('Generated Data: Active - Closed Blue Circles; Passive - Open Red 

 pos = get(gcf,'position'); 

 set(gcf,'position',[pos(1:2)/7 pos(3)*2.4 pos(4)*2.4]); 

 f36 = figure; 

 %Time(9) vs pH(4) vs Chloride(1) AP plot 

 ax36 = axes('Parent', f36); 

 for i = 1:1:mc 

'Parent', ax36); 

 hold on; 

 plot3(data_p_1{i,1}(:,9),data_p_1{i,1}(:,4),data_p_1{i,1}(:,1), ['b' '.'], 

 end 

'Parent', ax36); 

 plot3(data_p_0{i,1}(:,9),data_p_0{i,1}(:,4),data_p_0{i,1}(:,1), ['r' '.'], 

 x1 = xlim; y1 = ylim; z1 = zlim; 

 %plot3(data_1(:,9),data_1(:,4),data_1(:,1), ['b' 'o'], 'Parent', ax36); 

 hold off; 

 %plot3(data_0(:,9),data_0(:,4),data_0(:,1), ['r' 'o'], 'Parent', ax36); 

 xlim(x1); ylim(y1); zlim(z1); axis square; grid on; 

 xlabel('Time (yr)'); ylabel('pH'); zlabel('Cl^{-} (mol/L)') 

 f37 = copyobj(gcf,0); view([45 30]); 

 f38 = copyobj(gcf,0); view([135 30]); 

 %Active/Passive transitions with time 

 f39 = figure; 

 set(groot,'defaultAxesLineStyleOrder',{'-','--',':','-.'}); 

 ax39 = axes('Parent',f39); 

 adjPitGrowth = PitGrowth; 

 adjPitGrowth(adjPitGrowth ==-20) = 0; 

 semilogx(time_scale,adjPitGrowth,'Parent',ax39); 

 if time <= 1e-2 xmin = time/100; else xmin = 1e-2; end 

 xlim([xmin time]); ylim([-16 1]); grid on; 

 yticks([-15 -10 -5 0]); 

 yticklabels({'Active','Passive (E_{corr}<E_b)','Passive (E_{corr}>E_b and 

E_{corr}<E_{rp})','Pitting (E_{corr}>E_{rp})'}); 

 xlabel('Time (yr)'); 

 set(gcf,'position',[pos(1)/4 pos(2) pos(3)*1.5 pos(4)]); 

 set(groot,'defaultAxesLineStyleOrder','remove') 

 %Time(9) vs UWO Voltage AP plot 

 f40 = figure; 
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 ax40 = axes('Parent', f40); 

 for i = 1:1:mc 

 %hold on; 

 %semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,10), ['b' '+'], 'Parent', ax40); 

 %semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,11), ['b' 'x'], 'Parent', ax40); 

 hold on; 

 semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,6), ['b' '.'], 'Parent', ax40); 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,10), ['k' '.'], 'Parent', ax40); 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,11), ['r' 'o'], 'Parent', ax40); 

 end 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,6), ['r' 's'], 'Parent', ax40); 

 %dummy plot to correct legend 

 h = zeros(4, 1); 

 %h(1) = semilogx(0,0,['b' '+']); 

 %h(2) = semilogx(0,0,['b' 'x']); 

 h(1) = semilogx(0,0,['b' '.']); 

 h(2) = semilogx(0,0,['k' '.']); 

 h(3) = semilogx(0,0,['r' 'o']); 

 hold off; 

 h(4) = semilogx(0,0,['r' 's']); 

 xlim([1e-3 time]); ylim([-0.5 0.2]); grid on; 

% 

 xlabel('Time (yr^{-1})'); ylabel('UWO Trained Data (V_{SCE})'); 

% 

 legend([h(1),h(2),h(3),h(4),h(5),h(6)],'E_b Active', 'E_{rp} Active', ... 

 'E_{corr} Active','E_b Passive','E_{rp} Passive', 'E_{corr} 

Passive','Location','eastoutside'); 

 legend([h(1),h(2),h(3),h(4)], ... 

 'E_{corr} Active','E_b Passive','E_{rp} Passive', 'E_{corr} 

Passive','Location','eastoutside'); 

 pos = get(gcf,'position'); 

 set(gcf,'position',[pos(1:2)/1.5 pos(3)*1.5 pos(4)*1]); 

 %Time(9) vs UWO Voltage AP plot 

 f41 = figure; 

 ax41 = axes('Parent', f41); 

 for i = 1:1:mc 

 %hold on; 

 %semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,7), ['b' '+'], 'Parent', ax41); 

 %semilogx(data_p_1{i,1}(:,9),data_p_1{i,1}(:,8), ['b' 'x'], 'Parent', ax41); 

 hold on; 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,10), ['k' '.'], 'Parent', ax41); 

 end 

 semilogx(data_p_0{i,1}(:,9),data_p_0{i,1}(:,11), ['r' 'o'], 'Parent', ax41); 

 %dummy plot to correct legend 

 h = zeros(2, 1); 

 %h(1) = semilogx(0,0,['b' '+']); 

 %h(2) = semilogx(0,0,['b' 'x']); 

 h(1) = semilogx(0,0,['k' '.']); 

 hold off; 

 h(2) = semilogx(0,0,['r' 'o']); 

 xlim([1e-3 time]);  grid on; set(gca,'XScale','log'); 

 legend([h(1),h(2)], ... 

 xlabel('Time (yr^{-1})'); ylabel('UWO Trained Data (V_{SCE})'); 

 'E_b Passive','E_{rp} Passive', 'Location','eastoutside'); 

 % 

 %legend([h(1),h(2),h(3),h(4)],'E_b Active', 'E_{rp} Active', ... 

 'E_b Passive','E_{rp} Passive', 'Location','eastoutside'); 

 pos = get(gcf,'position'); 

 set(gcf,'position',[pos(1:2)/1.5 pos(3)*1.5 pos(4)*1]); 
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 if  ClassifierMethod == 0 

 %percent active 

 mean_active_neighbours = mean(mean(sum((active(IDX_KNN(:,:,:)))==1,3))); 

 mean_passive_neighours = mean(mean(sum((active(IDX_KNN(:,:,:)))==0,3))); 

 A = {'Mean Active Neighbours',mean_active_neighbours;'Mean Passive 

Neighbours',mean_passive_neighours}; 

 xlRange = 'M23'; 

 end 

 xlswrite(xl_filename,A,1,xlRange); 

 dsa = APData(:,{'Cl', 'SO4', 'HCO3', 'pH', 'T', 'active'}); 

 statarray_1 = grpstats(dsa,'active'); 

 statarray_2 = grpstats(dsa,{'active', 'T'},{'min', 'max'}, 'DataVars', 'pH'); 

 statarray_3 = grpstats(dsa,{'active', 'T'},{'min', 'max'}, 'DataVars', 'Cl'); 

 statarray_4 = grpstats(dsa,{'active', 'T'},{'min', 'max'}, 'DataVars', 'SO4'); 

 xlRange = 'M26'; 

 statarray_5 = grpstats(dsa,{'active', 'T'},{'min', 'max'}, 'DataVars', 'HCO3'); 

 xlRange = 'M30'; 

 writetable(statarray_1,xl_filename,'Sheet',1,'Range',xlRange); 

 xlRange = 'M42'; 

 writetable(statarray_2,xl_filename,'Sheet',1,'Range',xlRange); 

 xlRange = 'M55'; 

 writetable(statarray_3,xl_filename,'Sheet',1,'Range',xlRange); 

 xlRange = 'M66'; 

 writetable(statarray_4,xl_filename,'Sheet',1,'Range',xlRange); 

 if PRINT_FIGURES 

 writetable(statarray_5,xl_filename,'Sheet',1,'Range',xlRange); 

 saveas(f24,[subfolder filename ' 24 Temp vs pH vs Cl AP Plot'],'png'); 

],'png'); 

 saveas(f25,[subfolder filename ' 25 Temp vs pH vs Cl AP Plot View 2' 

 saveas(f26,[subfolder filename ' 26 Temp vs pH vs SO4 AP Plot' ],'png'); 

],'png'); 

 saveas(f27,[subfolder filename ' 27 Temp vs pH vs SO4 AP Plot View 2' 

 saveas(f28,[subfolder filename ' 28 Temp vs pH vs HCO3 AP Plot' ],'png'); 

],'png'); 

 saveas(f29,[subfolder filename ' 29 Temp vs pH vs HCO3 AP Plot View 2' 

],'png'); 

 saveas(f30,[subfolder filename ' 30 Time vs Ecorr AP Plot CongScully' 

],'png'); 

 saveas(f31,[subfolder filename ' 31 Time vs Eb and Erp AP Plot CongScully' 

CongScully' ],'png'); 

 saveas(f32,[subfolder filename ' 32 Time vs Eb Erp and Ecorr AP Plot 

 saveas(f33,[subfolder filename ' 33 Time vs Temperature AP Plot' ],'png'); 

 saveas(f34,[subfolder filename ' 34 UWO Data Matrix Plot' ],'png'); 

 saveas(f35,[subfolder filename ' 35 Generated Data Matrix Plot' ],'png'); 

 saveas(f36,[subfolder filename ' 36 Time vs pH vs Cl AP Plot' ],'png'); 

],'png'); 

 saveas(f37,[subfolder filename ' 37 Time vs pH vs Cl AP Plot View 2' 

],'png'); 

 saveas(f38,[subfolder filename ' 38 Time vs pH vs Cl AP Plot View 3' 

 saveas(f39,[subfolder filename ' 39 Active_Passive over time Plot' ],'png'); 

],'png'); 

 saveas(f40,[subfolder filename ' 40 Time vs Eb Erp and Ecorr AP Plot UWO' 

 end 

end 

 saveas(f41,[subfolder filename ' 41 Time vs Eb and Erp AP Plot UWO' ],'png'); 
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f42 = figure; 

ax42 = axes('Parent',f42); 

adjPitGrowth = PitGrowth; 

adjPitGrowth(adjPitGrowth ==-20) = 0; 

numel_active(:) = sum(adjPitGrowth(:,:) == -15); 

numel_passive(:) = sum(adjPitGrowth(:,:) == -10); 

numel_pitting(:) = sum(adjPitGrowth(:,:) > -5); 

hold on; 

semilogx(time_scale,numel_active,'b','LineWidth',2,'Parent',ax42); 

semilogx(time_scale,numel_passive,'k','LineWidth',2,'Parent',ax42); 

hold off; 

semilogx(time_scale,numel_pitting,'r','LineWidth',2,'Parent',ax42); 

if time <= 1e-2 xmin = time/100; else xmin = 1e-2; end 

xlim([xmin time]); grid on; 

xlabel('Time (yr)'); ylabel('Realizations'); 

legend('Number of Active Realizations', 'Number of Passive Realizations', 'Number of 

Pitting Realizations','Location','best'); 

pos = get(gcf,'position'); 

f43 = figure; 

set(gcf,'position',[pos(1)/4 pos(2) pos(3)*1.5 pos(4)]); 

ax43 = axes('Parent',f43); 

grid on; 

histogram(ax43,v1,bins); 

bins = logspace(min(floor(log10(v1))),max(ceil( log10(v1))),50); 

xlabel('Pit Depth (m)'); ylabel('Frequency'); 

f44 = figure; 

set(gca,'XMinorTick','on','XScale','log'); 

ax44 = axes('Parent',f44); 

histogram(ax44,v1); 

xlabel('Pit Depth (m)'); ylabel('Frequency'); 

saveas(f42,[subfolder filename ' 42 Active_Passive SUM over time Plot' ],'png'); 

saveas(f43,[subfolder filename ' 43 Pit Depth Histogram Semilog' ],'png'); 

toc; 

saveas(f44,[subfolder filename ' 44 Pit Depth Histogram' ],'png'); 

%end 

%end associated function handle 

A1.10	 Environment Function
Given a set of parameters, determine if the system is active or passive.

 ... 

function [pitgrowth, i_new] = ENV(trainedclassifier,i,t,ph,oh,cl,so4,hco3,O2_sat, ... 

 O2_decay,Eb_const,Erp_const, 

 time_scale,pgeA,pgeN,potentialexp,... 

 trainedModel_Eb,trainedModel_Erp, ... 

 classifiermethod) 

 %predict: 0 passive; 1 active 

 switch classifiermethod 

 case 0 

 if (predict(trainedclassifier,[cl so4(i) hco3(i) ph t(i)])==0) 

 ...  [pitgrowth, i_new] = PIT(i,t,ph,oh,cl,so4,hco3,O2_sat, 
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 ...  O2_decay,Eb_const,Erp_const, 

 time_scale,pgeA,pgeN,potentialexp, ... 

 trainedModel_Eb,trainedModel_Erp); 

 else %if active 

 pitgrowth = -15; 

 i_new = i; 

 end 

 otherwise 

 if (trainedclassifier.predictFcn(table(cl,so4(i),hco3(i),ph,t(i), ... 

 'VariableNames',{'Cl','SO4','HCO3','pH','T'}))==0) 

 ...  [pitgrowth, i_new] = PIT(i,t,ph,oh,cl,so4,hco3,O2_sat, 

 ...  O2_decay,Eb_const,Erp_const, 

 time_scale,pgeA,pgeN,potentialexp, ... 

 trainedModel_Eb,trainedModel_Erp); 

 else %if active 

 pitgrowth = -15; 

 i_new = i; 

 end 

 end 

end 

A1.11	 Pit Initiation Function
Given a set of parameters determine if a pit is initialized.

The breakdown potential is determined by: (from Cong et al. 2009: Equation 8) 
EB = 1.11 + 0.116 × log[OH−] + 0.197 × log[HCO3

−] − 0.130 × log([SO4
2−] + [Cl−]) 

or by regression of UWO data.

 ... function [pitgrowth, i_new] = PIT(i,t,ph,oh,cl,so4,hco3,O2_sat, 

 ...  O2_decay,Eb_const,Erp_const, 

 time_scale,pgeA,pgeN,potentialexp,... 

 trainedModel_Eb,trainedModel_Erp) 

 F  = 96487; 

 %Ecorr Calculation constants Eq 14 from King et al. 1995 

 R 

 %C/mol Faraday constant 

 = 8.314; 

 n_a 

 %J/K/mol Gas Constant 

 = 1; 

 n_c  = 4; 

 %number of anodic electrons 

 E_a_0 

 %number of cathodic electrons 

 = -0.105; 

 k_a 

 %V(SCE) standard potential 

 = 3.3e-4;  %dm4/mol/s 

 k_2_r  = 1.42e-3;  %dm/s 

 D_O2  = 1.7e-5;  %cm2/s 

 %cm2/s  D_CuCl2 = 5.5e-6; 

 O2 = O2_sat * exp(-1 * time_scale(i) * O2_decay); 

 Ecorr = E_a_0 + 2.3*R*(t(i)+273.15)* ... 

 log10((k_2_r*n_c*D_O2*O2)/(k_a*cl^2*n_a*D_CuCl2))/F; 

 if potentialexp == 0 

 elseif potentialexp == 1 

 Eb = Eb_const+0.116*log10(oh)+0.197*log10(hco3(i))-0.130*log10(so4(i)+cl); 

 Eb = trainedModel_Eb.predictFcn(table(cl,so4(i),hco3(i),ph,t(i), ... 

 end 

 'VariableNames',{'Cl','SO4','HCO3','pH','T'})); 
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 if Ecorr>Eb 

 [pitgrowth, i_new] = PITPROP(i,t,ph,oh,cl,so4,hco3,O2_sat, ... 

 O2_decay,Erp_const,Ecorr,  ... 

 time_scale,pgeA,pgeN,potentialexp,... 

 trainedModel_Erp); 

 % 

 %[pitgrowth, i_new] = PITPROP(i,t,oh,so4,hco3,O2_sat, ... 

 else 

 O2_decay,Erp_const,Ecorr,time_scale); 

 pitgrowth = -10; 

 i_new = i; 

 end 

end 

A1.12	 Pit Propagation Function
Given a set of parameters determine if a pit propagates.

The repassivation potential is determined by: (from Cong et al. 2009: Equation 5)
ERP = − 0.0925 + 0.00373 × log[OH−] − 0.0139 × log[HCO3

−] − 0.0566 × log[Cl−] 
or by regression of UWO data.

 ... function [pitgrowth, i_new] = PITPROP(i,t,ph,oh,cl,so4,hco3,O2_sat, 

 ...  O2_decay,Erp_const,EcorrPit, 

 time_scale,pgeA,pgeN,potentialexp,... 

 trainedModel_Erp) 

 F 

 %Ecorr Calculation constants Eq 14 from King et al. 1995 

 R 

 = 96487; %C/mol Faraday constant 

 n_a 

 = 8.314; %J/K/mol Gas Constant 

 n_c 

 = 1; %number of anodic electrons 

 E_a_0 

 = 4; %number of cathodic electrons 

 k_a 

 = -0.105; %V(SCE) standard potential 

 k_2_r 

 = 3.3e-4; %dm4/mol/s 

 = 1.42e-3; %dm/s 

 D_O2  = 1.7e-5; %cm2/s 

 D_CuCl2 = 5.5e-6; %cm2/s 

 %calculate re-passivation potential 

 if potentialexp == 0 

 Erp = Erp_const + 0.00373 * log10(oh) - 0.0139 ... 

* log10(hco3(i)) - 0.0566 * log10(cl);

 elseif potentialexp == 1 

 Erp = trainedModel_Erp.predictFcn(table(cl,so4(i),hco3(i),ph,t(i), ... 

 end 

 'VariableNames',{'Cl','SO4','HCO3','pH','T'})); 

 if (EcorrPit>Erp) && (i<length(time_scale)) 

 %Pit Growth Expression Method 

 if i == 1 

 if pgeN == -10 % constant growth method 

 else 

 pitgrowth = pgeA*(time_scale(i)-0); 

 end 

 pitgrowth = pgeA*(time_scale(i)-time_scale(i-1)); 

 if i == 1 

 else % Denison and Romanoff (1950) method 

 pitgrowth = pgeA*(time_scale(i)-0)^pgeN; 
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 else 

 end 

 end 

 pitgrowth = pgeA*(time_scale(i)-time_scale(i-1))^pgeN; 

 %pitgrowth = pitgrowthrate; 

 i_new = i+1; %increment pit growth time 

 %Calculate new EcorrGrowth 

 O2 = O2_sat * exp(-1 * time_scale(i_new) * O2_decay); 

 EcorrGrowth = E_a_0 + 2.3*R*(t(i_new)+273.15)* ... 

 log10((k_2_r*n_c*D_O2*O2)/(k_a*cl^2*n_a*D_CuCl2))/F; 

 %Calculate new re-passivation potential 

 if potentialexp == 0 

 Erp = Erp_const + 0.00373 * log10(oh) - 0.0139 * ... 

 log10(hco3(i_new)) - 0.0566 * log10(cl); 

 elseif potentialexp == 1 

... 

 Erp = trainedModel_Erp.predictFcn(table(cl,so4(i),hco3(i),ph,t(i_new), 

 end 

 'VariableNames',{'Cl','SO4','HCO3','pH','T'})); 

 while EcorrGrowth>Erp 

 i_new = i_new + 1; %increment pit growth time 

 if i_new >= length(time_scale) 

 i_new = length(time_scale); 

 end 

 break %if at the end of time 

 %re-calculate parameters for new time 

 O2 = O2_sat * exp(-1 * time_scale(i_new) * O2_decay); 

 EcorrGrowth = E_a_0 + 2.3*R*(t(i_new)+273.15)* ... 

 log10((k_2_r*n_c*D_O2*O2)/(k_a*cl^2*n_a*D_CuCl2))/F; 

 if potentialexp == 0 

 Erp = Erp_const + 0.00373 * log10(oh) - 0.0139 * ... 

 log10(hco3(i_new)) - 0.0566 * log10(cl); 

 elseif potentialexp == 1 

 Erp = 

trainedModel_Erp.predictFcn(table(cl,so4(i),hco3(i),ph,t(i_new), ... 

 end 

 end 

 'VariableNames',{'Cl','SO4','HCO3','pH','T'})); 

 if pgeN == -10 % constant growth method 

 pitgrowth = pitgrowth + pgeA*(time_scale(i_new)-time_scale(i)); 

 else % Denison and Romanoff (1950) method 

 end 

 pitgrowth = pitgrowth + pgeA*(time_scale(i_new)-time_scale(i))^pgeN; 

 else 

 %pitgrowth = pitgrowth + 1; 

 pitgrowth = -5; 

 i_new = i; 

 end 

end 
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A2	 importfile function

function tableout = importfile(workbookFile,sheetName,startRow,endRow) 

% 

%IMPORTFILE Import data from a spreadsheet 

% 

 DATA = IMPORTFILE(FILE) reads data from the first worksheet in the 

%  table. 

% 

% 

 Microsoft Excel spreadsheet file named FILE and returns the data as a 

% 

% 

 DATA = IMPORTFILE(FILE,SHEET) reads from the specified worksheet. 

% 

 DATA = IMPORTFILE(FILE,SHEET,STARTROW,ENDROW) reads from the specified 

% 

 worksheet for the specified row interval(s). Specify STARTROW and 

% 

 ENDROW as a pair of scalars or vectors of matching size for 

% 

% 

% 

 ENDROW of inf. 

 dis-contiguous row intervals. To read to the end of the file specify an 

% 

% 

% Example: 

Non-numeric cells are replaced with: NaN 

% 

%  See also XLSREAD. 

 ActivePassiveDataTest = importfile('ActivePassiveDataTest.xlsx','Sheet1',5,321); 

% Auto-generated by MATLAB on 2018/05/07 13:22:33 

A2.1	 Input handling

% If no sheet is specified, read first sheet 

end 

if nargin == 1 || isempty(sheetName) 

 sheetName = 1; 

if nargin <= 3 

 startRow = 5; 

% If row start and end points are not specified, define defaults 

end 

 endRow = 628; 

A2.2	 Import the data, extracting spreadsheet dates in Excel serial date format

[~, ~, raw, dates] = xlsread(workbookFile, sheetName, 

for block=2:length(startRow) 

sprintf('A%d:Q%d',startRow(1),endRow(1)),'' , @convertSpreadsheetExcelDates); 

 [~, ~, tmpRawBlock,tmpDateNumBlock] = xlsread(workbookFile, sheetName, 

 raw = [raw;tmpRawBlock]; %#ok<AGROW> 

sprintf('A%d:Q%d',startRow(block),endRow(block)),'' , @convertSpreadsheetExcelDates); 

end 

 dates = [dates;tmpDateNumBlock]; %#ok<AGROW> 

raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 

stringVectors = string(raw(:,[2,12])); 

stringVectors(ismissing(stringVectors)) = ''; 

dates = dates(:,1); 

raw = raw(:,[3,4,5,6,7,8,9,10,11,13,14,15,16,17]); 



SKB TR-20-01	 101

A2.3	 Replace non-numeric cells with NaN

R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 

raw(R) = {NaN}; % Replace non-numeric cells 

R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),dates); % Find non-numeric cells 

dates(R) = {NaN}; % Replace non-numeric Excel dates with NaN 

A2.4	 Create output variable

I = cellfun(@(x) ischar(x), raw); 

raw(I) = {NaN}; 

data = reshape([raw{:}],size(raw)); 

A2.5	 Create table

tableout = table; 

A2.6	 Allocate imported array to column variable names

dates(~cellfun(@(x) isnumeric(x) || islogical(x), dates)) = {NaN}; 

tableout.date = datetime([dates{:,1}].', 'ConvertFrom', 'Excel'); 

tableout.Filename = stringVectors(:,1); 

tableout.Cl = data(:,1); 

tableout.SO4 = data(:,2); 

tableout.HCO3 = data(:,3); 

tableout.pH = data(:,4); 

tableout.T = data(:,5); 

tableout.Ecorr = data(:,6); 

tableout.E1 = data(:,7); 

tableout.Eb = data(:,8); 

tableout.Erp = data(:,9); 

tableout.Note = categorical(stringVectors(:,2)); 

tableout.active = data(:,10); 

tableout.I01 = data(:,11); 

tableout.m1 = data(:,12); 

tableout.I02 = data(:,13); 

tableout.m2 = data(:,14); 

% For code requiring serial dates (datenum) instead of datetime, uncomment 

% the following line(s) below to return the imported dates as datenum(s). 

% tableout.date=datenum(tableout.date); 
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A3	 importChlorideCDF function

function tableout = importChlorideCDF(workbookFile,sheetName,startRow,endRow) 

% 

%IMPORTFILE Import data from a spreadsheet 

% 

 DATA = IMPORTFILE(FILE) reads data from the first worksheet in the 

% 

% 

 table. 

% 

 Microsoft Excel spreadsheet file named FILE and returns the data as a 

% 

% 

 DATA = IMPORTFILE(FILE,SHEET) reads from the specified worksheet. 

% 

 DATA = IMPORTFILE(FILE,SHEET,STARTROW,ENDROW) reads from the specified 

% 

 worksheet for the specified row interval(s). Specify STARTROW and 

% 

 ENDROW as a pair of scalars or vectors of matching size for 

%  ENDROW of inf.% 

% 

% Example: 

 dis-contiguous row intervals. To read to the end of the file specify an 

% 

%  See also XLSREAD. 

 ChlorideCDF = importfile('ChlorideCDF.xlsx','Sheet1',2,44); 

% Auto-generated by MATLAB on 2018/05/29 11:01:38 

A3.1	 Input handling

% If no sheet is specified, read first sheet 

end 

if nargin == 1 || isempty(sheetName) 

 sheetName = 1; 

if nargin <= 3 

 startRow = 2; 

% If row start and end points are not specified, define defaults 

end 

 endRow = 44; 

A3.2	 Import the data

for block=2:length(startRow) 

data = xlsread(workbookFile, sheetName, sprintf('A%d:D%d',startRow(1),endRow(1))); 

 tmpDataBlock = xlsread(workbookFile, sheetName, 

sprintf('A%d:D%d',startRow(block),endRow(block))); 

end 

 data = [data;tmpDataBlock]; %#ok<AGROW> 

A3.3	 Create table

tableout = table; 
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A3.4	 Allocate imported array to column variable names

tableout.Clmoll = data(:,1); 

tableout.SortCl = data(:,2); 

tableout.PointNo = data(:,3); 

tableout.Partofdistr = data(:,4); 

A4	 trainClassifier_Bagged_Tree_Ver function

function [trainedClassifier, validationAccuracy] = 

trainClassifier_Bagged_Tree_Ver(trainingData) 

% [trainedClassifier, validationAccuracy] = trainClassifier(trainingData) 

% returns a trained classifier and its accuracy. This code recreates the 

% classification model trained in Classification Learner app. Use the 

% 

% generated code to automate training the same model with new data, or to 

% 

%  Input: 

% learn how to programmatically train models. 

% 

% 

 trainingData: a table containing the same predictor and response 

% 

%  Output: 

 columns as imported into the app. 

% 

 trainedClassifier: a struct containing the trained classifier. The 

% 

% 

 classifier. 

% 

 struct contains various fields with information about the trained 

%  data. 

% 

% 

 trainedClassifier.predictFcn: a function to make predictions on new 

% 

 validationAccuracy: a double containing the accuracy in percent. In 

% 

% 

 each model. 

 the app, the History list displays this overall accuracy score for 

% Use the code to train the model with new data. To retrain your 

% 

% classifier, call the function from the command line with your original 

% data or new data as the input argument trainingData. 

% 

% T, enter: 

% For example, to retrain a classifier trained with the original data set 

% 

 [trainedClassifier, validationAccuracy] = trainClassifier(T) 

% use 

% 

% 

% To make predictions with the returned 'trainedClassifier' on new data T2, 

 yfit = trainedClassifier.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns as used 

% during training. For details, enter: 

 trainedClassifier.HowToPredict 

% Auto-generated by MATLAB on 05-Feb-2019 14:02:34 

% Extract predictors and response 

% model. 

% This code processes the data into the right shape for training the 

inputTable = trainingData; 

predictorNames = {'Cl', 'SO4', 'HCO3', 'pH', 'T'}; 

predictors = inputTable(:, predictorNames); 
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A5	 trainRegressionModel_Eb_Boosted_Tree_Ver function

function [trainedModel, validationRMSE] = 

trainRegressionModel_Eb_Boosted_Tree_Ver(trainingData) 

% [trainedModel, validationRMSE] = trainRegressionModel(trainingData) 

% returns a trained regression model and its RMSE. This code recreates the 

% model trained in Regression Learner app. Use the generated code to 

% 

% 

%  Input: 

% automate training the same model with new data, or to learn how to 

% programmatically train models. 

% 

% 

 trainingData: a table containing the same predictor and response 

% 

%  Output: 

 columns as imported into the app. 

% 

 trainedModel: a struct containing the trained regression model. The 

%  model. 

% 

% 

 struct contains various fields with information about the trained 

% 

% 

 trainedModel.predictFcn: a function to make predictions on new data. 

% 

 validationRMSE: a double containing the RMSE. In the app, the 

% 

 History list displays the RMSE for each model. 

% Use the code to train the model with new data. To retrain your model, 

% 

% call the function from the command line with your original data or new 

% data as the input argument trainingData. 

% 

% set T, enter: 

% For example, to retrain a regression model trained with the original data 

% 

 [trainedModel, validationRMSE] = trainRegressionModel(T) 

% 

% 

% To make predictions with the returned 'trainedModel' on new data T2, use 

 yfit = trainedModel.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns as used 

% during training. For details, enter: 

 trainedModel.HowToPredict 

% Auto-generated by MATLAB on 05-Feb-2019 14:07:43 

% Extract predictors and response 

% model. 

% This code processes the data into the right shape for training the 

inputTable = trainingData; 

predictorNames = {'Cl', 'SO4', 'HCO3', 'pH', 'T'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Eb; 

isCategoricalPredictor = [false, false, false, false, false]; 

% Train a regression model 

template = templateTree(... 

% This code specifies all the model options and trains the model. 

 'MinLeafSize', 8); 

regressionEnsemble = fitrensemble(... 

 predictors, ... 

 response, ... 

 'Method', 'LSBoost', ... 
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 'NumLearningCycles', 30, ... 

 'Learners', template, ... 

 'LearnRate', 0.1); 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(regressionEnsemble, x); 

trainedModel.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

% Add additional fields to the result struct 

trainedModel.RequiredVariables = {'Cl', 'SO4', 'HCO3', 'pH', 'T'}; 

trainedModel.RegressionEnsemble = regressionEnsemble; 

R2018b.'; 

trainedModel.About = 'This struct is a trained model exported from Regression Learner 

trainedModel.HowToPredict = sprintf('To make predictions on a new table, T, use: \n 

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this 

struct, e.g. ''trainedModel''. \n \nThe table, T, must contain the variables returned 

by: \n  c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) must 

match the original training data. \nAdditional variables are ignored. \n \nFor more 

information, see <a href="matlab:helpview(fullfile(docroot, ''stats'', 

exported model</a>.'); 

''stats.map''), ''appregression_exportmodeltoworkspace'')">How to predict using an 

% Extract predictors and response 

% model. 

% This code processes the data into the right shape for training the 

inputTable = trainingData; 

predictorNames = {'Cl', 'SO4', 'HCO3', 'pH', 'T'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Eb; 

isCategoricalPredictor = [false, false, false, false, false]; 

% Perform cross-validation 

partitionedModel = crossval(trainedModel.RegressionEnsemble, 'KFold', 5); 

% Compute validation predictions 

validationPredictions = kfoldPredict(partitionedModel); 

% Compute validation RMSE 

validationRMSE = sqrt(kfoldLoss(partitionedModel, 'LossFun', 'mse')); 

A6	 trainRegressionModel_Erp_Boosted_Tree_Ver function

function [trainedModel, validationRMSE] = 

trainRegressionModel_Erp_Boosted_Tree_Ver(trainingData) 

% [trainedModel, validationRMSE] = trainRegressionModel(trainingData) 

% returns a trained regression model and its RMSE. This code recreates the 

% model trained in Regression Learner app. Use the generated code to 

% 

% 

%  Input: 

% automate training the same model with new data, or to learn how to 

% programmatically train models. 

% 

 trainingData: a table containing the same predictor and response 

 columns as imported into the app. 
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% 

% 

%  Output: 

% 

 trainedModel: a struct containing the trained regression model. The 

%  model. 

% 

% 

 struct contains various fields with information about the trained 

% 

% 

 trainedModel.predictFcn: a function to make predictions on new data. 

% 

 validationRMSE: a double containing the RMSE. In the app, the 

% 

 History list displays the RMSE for each model. 

% Use the code to train the model with new data. To retrain your model, 

% 

% call the function from the command line with your original data or new 

% data as the input argument trainingData. 

% 

% set T, enter: 

% For example, to retrain a regression model trained with the original data 

% 

 [trainedModel, validationRMSE] = trainRegressionModel(T) 

% 

% 

% To make predictions with the returned 'trainedModel' on new data T2, use 

 yfit = trainedModel.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns as used 

% during training. For details, enter: 

 trainedModel.HowToPredict 

% Auto-generated by MATLAB on 02-Nov-2018 17:14:03 

% Extract predictors and response 

% model. 

% This code processes the data into the right shape for training the 

inputTable = trainingData; 

predictorNames = {'Cl', 'SO4', 'HCO3', 'pH', 'T'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Erp; 

isCategoricalPredictor = [false, false, false, false, false]; 

% Train a regression model 

template = templateTree(... 

% This code specifies all the model options and trains the model. 

 'MinLeafSize', 8); 

regressionEnsemble = fitrensemble(... 

 predictors, ... 

 response, ... 

 'Method', 'LSBoost', ... 

 'NumLearningCycles', 30, ... 

 'Learners', template, ... 

 'LearnRate', 0.1); 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(regressionEnsemble, x); 

trainedModel.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

% Add additional fields to the result struct 

trainedModel.RequiredVariables = {'Cl', 'SO4', 'HCO3', 'pH', 'T'}; 

trainedModel.RegressionEnsemble = regressionEnsemble; 
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R2018b.'; 

trainedModel.About = 'This struct is a trained model exported from Regression Learner 

trainedModel.HowToPredict = sprintf('To make predictions on a new table, T, use: \n 

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this 

struct, e.g. ''trainedModel''. \n \nThe table, T, must contain the variables returned 

by: \n  c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) must 

match the original training data. \nAdditional variables are ignored. \n \nFor more 

information, see <a href="matlab:helpview(fullfile(docroot, ''stats'', 

exported model</a>.'); 

''stats.map''), ''appregression_exportmodeltoworkspace'')">How to predict using an 

% Extract predictors and response 

% model. 

% This code processes the data into the right shape for training the 

inputTable = trainingData; 

predictorNames = {'Cl', 'SO4', 'HCO3', 'pH', 'T'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Erp; 

isCategoricalPredictor = [false, false, false, false, false]; 

% Perform cross-validation 

partitionedModel = crossval(trainedModel.RegressionEnsemble, 'KFold', 5); 

% Compute validation predictions 

validationPredictions = kfoldPredict(partitionedModel); 

% Compute validation RMSE 

validationRMSE = sqrt(kfoldLoss(partitionedModel, 'LossFun', 'mse')); 
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