

Complex forming properties of natural occuring fulvic acids Part 1. Complexes with cadmium, copper and calcium

Jacob A. Marinsky, A. Mathuthu, M. Bicking and J. Epharim

State University of New York at Buffalo Buffalo, New York 14214, July 1985

SVENSK KÄRNBRÄNSLEHANTERING AB

SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO

BOX 5864 S-102 48 STOCKHOLM TEL 08-67 95 40 TELEX 13108-SKB TEL 08-665 28 00 COMPLEX FORMING PROPERTIES OF NATURAL OCCURRING FULVIC ACIDS

Part 1. Complexes with Cadmium, Copper and Calcium

Jacob A. Marinsky, A. Mathuthu, M. Bicking and J. Ephraim State University of New York at Buffalo Buffalo, New York 14214, July 1985

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

A list of other reports published in this series during 1985 is attached at the end of this report. Information on KBS technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77) and 1984 (TR 85-01) is available through SKB. COMPLEX FORMING PROPERTIES OF NATURAL OCCURRING FULVIC ACIDS

Part 1. Complexes with Cadmium, Copper and Calcium

Jacob A. Marinsky, A. Mathuthu, M. Bicking and J. Ephraim

Chemistry Department State University of New York at Buffalo Buffalo, New York 14214

July, 1985

CONTENTS

ABSTRACT

1

I	INTRODUCTION	2
II	A REEXAMINATION OF EARLIER TRACE METAL ION BINDING STUDIES CARRIED OUT WITH ARMADALE HORIZONS Bh FULVIC ACID	2
III	STUDY OF THE PROTONATION PROPERTIES OF AN AQUATIC SWEDISH FULVIC ACID	5
TV	TEST OF REVISED BINDING MODEL	6
	A. Analysis of Cd(II)-Ion Binding Data with Revised Model	6
	B. Analysis of Cu(II)-Ion Binding Data with Revised Model	8
	C. An Additional Test of the Revised Model in a Limited Analysis of Ca(II)-Ion Binding to Horizons Bh Fulvic Acid	9
v	SUMMARY AND CONCLUSION	10
	A. The Protonation Properties of a Swedish Fulvic Acid	10
	B. Further Development of a Model for the Anticipation of Metal Ion Speciation in the Presence of Fulvic Acid	11
	C. Refinement of Earlier Estimates of the Effect of Fulvic Acid at the Low Concentration Levels Encountered in Deep Ground Waters on the Speciation of Trace Quantities of Eu(III)	12
VI	REFERENCES	13

Tables I - XIII

•

15-44

The experimental program developed in our earlier investigations of the protonation equilibria encountered with Armadale Horizons Bh and Suwannee River fulvic-acid has been employed in the present investigation of a Swedish fulvic acid source. Complications introduced by the polyelectrolyte nature and the degree of heterogeneity in the functional unit content of this natural organic acid molecule have been resolved as they were with the previous fulvic acid samples. The physical chemical properties of this fulvic acid have been compared with those resolved for the Armadale Horizons Bh and the Suwannee River fulvic acid as well.

The insight gained from these protonation studies and metal ion binding studies, also carried out in the course of this investigation, has led to the development of a model for interpretation of the binding of metal ions to fulvic acid at any pH, medium ionic strength, and metal ion and fulvic acid concentration level.

I. INTRODUCTION

The unified model developed earlier for the interpretation¹⁻⁶ of fulvic acid protonation and metal ion binding equilibria encountered in two different fulvic acid sources (Armadale Horizons Bh and Suwannee River)^{7,8} has been used to reexamine more critically the binding data obtained in ion-exchange distribution experiments that had been conducted earlier to investigate the binding of trace level concentration of Eu(III)(Eu¹⁵⁴), Co(II)(Co⁶⁰), Zn(II)(Zn⁶⁵) and Cd(II)(Cd¹⁰⁹) to Armadale Horizons Bh fulvic acid at various experimental conditions of pH, FA concentration, and ionic strength.

Additional refinements that might be effected in the model through the above computational program were then to be tested in an experimental program facilitated by the accessibility of electrodes which could yield a direct and accurate assessment of the free metal ion under investigation. This requirement limited the investigation performed in this research period to the following metal ions: Cd(II), Cu(II), and Ca(II). However, it is the aim of the investigation to include also the metal ions $UO_2^{+2}(VI)$, Fe(II) and Fe(III).

Because of the need to demonstrate the applicability of any refined model that might be developed for the consideration of metal ion speciation tendencies in the presence of fulvic acid to the equilibria encountered with organic substances dissolved in Swedish deep underground waters much of the research was carried out with a Swedish aquatic fulvic acid. However, a number of the experiments undertaken used Armadale Horizons Bh fulvic acid because of the limited supply of the Swedish fulvic acid source.

To facilitate the research carried out with the Swedish fulvic acid its protonation properties were investigated potentiometrically in aqueous and non aqueous media according to the methodology developed in our earlier investigations of other fulvic sources (Armadale Horizons Bh and Suwannee River).⁹

II. A REEXAMINATION OF EARLIER TRACE METAL ION BINDING STUDIES CARRIED OUT WITH ARMADALE HORIZONS Bh FULVIC ACID

The reasonably successful analysis of earlier potentiometric studies of Cu(II)-ion binding to the Armadale Horizons Bh and the Suwannee River fulvic acid sources have shown that the speciation tendencies of Cu(II)-ion in the presence of fulvic acid are rather well ancitipated with the model developed.¹⁰ In this model the sequence of uni and bidentate sites, tentatively identified with the acidic molecules they most closely resembled, were presumed to interact with Cu(II)-ion as they would in the particular molecule they were identified with, i.e., salicylic, phthalic, aminocarboxylic, dihydroxyl acid. On this basis the Cu(II)-ion complexed species presumed to be formed with these sites were assigned formation constants identical with or close-ly resembling the literature values reported for them.¹¹

In order to test whether the above model provided accurate estimates as well of the effect of fulvic acid on the speciation tendencies of di- and tri-valent metal ions, an objective of our program, the results of trace metal binding studies compiled in an ion-exchange distribution study carried out earlier¹² were examined with the model.

It was immediately discovered that there was no correlation between prediction and experiment when the model was employed exactly as it had been with the Cu(II), FA, $Na(K)NO_3$ systems. The binding of trace metal ion to the fulvic acid was severely underestimated. This failure of the model has now been attributed to an incomplete description of the function of the hydroxyl sites on the basis of the following analysis.

When the difference between the experimentally measured $(\frac{D_o-D}{D})$

and the model-based calculation of the ratio of bound to free trace metal ion $(\Sigma M_b/M_f(calc))$ is divided by the concentration of a hypothetical site, ΣC_s , and equated to an arbitrarily assigned stability constant, β_{MA} (Z-1)+, as

$$\left(\frac{D_{o}-D}{D} - \frac{\Sigma M_{b}}{M_{f}^{2+}}\right) \frac{1}{\left(\exp - Z \varepsilon \Psi_{(a)}/kT\right) (\gamma_{M}^{Z+})} \left(\frac{1}{\alpha_{x} \Sigma C_{s}}\right) = \beta_{MS}^{(Z-1)+}$$
(1)

shown the values of α_x , the degree of dissociation of the interacting site, S, can be related to each other by solution of the x simultaneous equations arrived at by equating the left-hand side of equation 1, which is invariant, in the sequence of the x experimental point so examined. By such an approach ΣC_s , the total concentration of site S, dissociated and undissociated, is cancelled in the computation. In equation 1, only α_x , ΣC_s and β_{MS} (Z-1)+ are unaccessible; D is the measured distribution of trace metal ion between 1 g of resin and 1 g of solution in the FA-free but otherwise equivalent aqueous medium, D is the measured distribution in the FA-containing systems, $(\Sigma M_b/M_f)_{calc}$ is compiled from the model, the exponential term which corrects for deviation due to the charge on the FA molecule is accessible from the protonation studies, Z is the valence of the trace metal ion and γ_M is the single ion activity coefficient correction, proposed by Kielland, to compensate for the non-ideality introduced by long range Debyean interactions at the experimental ionic strength.

With the relative magnitudes of α_x made available in this way the Henderson-Hasselbalch equation,

$$pH - \log \frac{\alpha_x \Sigma C_s}{(1 - \alpha_x) \Sigma C_s} = pK_{HS}^{app}$$
(2)

given above, was used to identify site S. Different values of ΣC_s were employed in eq. 2 until a constant value of $p K_{HS}^{app}$ was resolved. The $p K_{HS}^{app}$ of 6.1 \pm 0.2 so obtained unambiguously identified the HS site with the weakly acidic OH functional unit assigned earlier in the protonation studies.

The extra binding of Co(II), Zn(II), Cd(II), and Eu(III) obtained from the difference between D_o-D/D and $(\Sigma M_b/M_f)_{calc}$, computed by examining only their complexation by the several carboxylic acid moieties ascribed to the FA molecule, has been, on the basis of the above result, used in eq. 1, to evaluate the formation constant of the complexed species formed with the -OH site. These computations are summarized in Tables I-IV for experiments in which FA concentration, pH and medium ionic strength were varied.

From this reanalysis of the ion-exchange distribution data it is apparent that the previously undetected interaction of metal ion with the OH moiety dominates the complexation of the divalent and trivalent metal ions examined at trace-level concentrations. With the trivalent ion (Eu(III)) this domination is so extreme that the presence of the other complexed species is small enough to neglect.

One other factor that is noticeable is the scatter in the β values resolved. For example, in Table II, which summarizes the data obtained with Co^{60} , such scatter is especially noticeable. Much of this scatter, however, is attributable to the large experimental uncertainty encountered in some of the measurements. In those experiments where the value of D is not markedly different from D_o error in each measured value is introduced by statistical uncertainty in the observed measurement and the background correction, which when D_0 and D are large, is not much smaller than the activity level of the sample itself. Such possibility of error was further enhanced by the fact that very small quantities of resin had to be used in these very same experiments to assure a measurable residual activity and the measurement of their weight had accuracy limits of ~3 to 4%. Since the computation of D_{o} and D were based on the dry resin weight additional uncertainty could arise from incorrect water content assessments introduced by nonuniformity in the water content of the resin. Such error in D_o and D is of course very much exaggerated in the value of D_0-D/D to explain much of the scatter in the data.

In those instances where D is quite small sizeable error is unavoidable because its value is based on the small difference between two large numbers, initial and final activity.

Another factor that may interfere with resolution of the parameter under investigation is contained in the potential for absorption of fulvic acid by the resin. At low pH fulvic acid is strongly absorbed by uncharged polystyrene based resin. If absorption of the fulvic acid by the highly charged polystyrene sulfonate resin had been encountered, however, its effect, a reduction in the value of the β parameter, would have been most noticeable at low pH, where the tendency for FA absorption, if any existed, would be largest. We note that the trend in the β parameter is toward higher values at low pH and low ionic strength to indicate that complication of the results by undetected absorption of the FA is unlikely. Instead, the possibility that the trace element may, at low pH and low ionic strength undergo ion-dipole interaction at the surface of the FA molecule may account for this trend. We note that at the higher ionic strength values there is a tendency for the β parameter to converge to a lower value than is obtained at the lower I values (see Tables III and IV).

III. STUDY OF THE PROTONATION PROPERTIES OF AN AQUATIC SWEDISH FULVIC ACID

The preceding analysis suggests that there is a need to modify the metal-ion binding model developed in our earlier examinations of Cu(II)-ion binding by two different fulvic acid sources. There is no doubt that in addition to being involved with the formation of both a uni- and bidentate complex the weakly acidic-OH is also involved in the formation of a third complex which, when exposed to trace level concentrations of di- and trivalent ions, dominates the complexation behavior of the metal ion in FA.

To facilitate examination of this aspect in the model refinement to be sought an aquatic fulvic acid source from Sweden was investigated potentiometrically in aqueous and non aqueous media according to the methodology developed in earlier studies of other fulvic acid sources (Armadale Horizons Bh and Suwannee River). The results of this research⁹ provided a quantitative estimate of the non ideality introduced to the behavior of hydrogen and free metal ions by the polyelectrolyte nature of the fulvic acid molecule in solution at different simple salt concentration levels (0.0010, 0.010 and 0.10 M). After the appropriate corrections were made for variation of this deviation factor with both the degree of fulvic acid neutralization and the concentration levels it was possible to deduce the nature and the extent of functional heterogeneity in the fulvic acid molecule from the residual potentiometric pattern.

The insight gained with respect to the carboxylic and OH content of the Swedish fulvic acid molecule from (1) its potentiometric examination in non-aqueous medium during its neutralization with tetrabutyl ammonium hydroxide in the presence of the internal reference standard, parahydroxybenzoic acid and from (2) the protonation enhancement in aqueous medium, affected by the addition of both Eu(III) and Cu(II) to the fulvic acid sample facilitated the assignment of n functional sites, their abundance, A_n , and their acidity (pK_a^{int}).

It was possible, from a comparison of these data with similar data obtained with the Armadale Horizons Bh fulvic acid and the Suwannee River fulvic acid to show that the Swedish FA like the Armadale FA and unlike the Suwannee River FA contains both salicylic acid-like and dihydroxyl sites. The less effective removal of Cu^{+2} ion by the Swedish FA in comparison with the Armadale FA over the pH range studied was tentatively attributed (1) to a significantly smaller presence of amino acid site and (2) to the somewhat lower covalency of the Cu-O bonds originating in the more acidic sites associated with the Swedish FA sample.

The site assignments and their combination with each other $(pK_1^{int} = 1.7; A_1 = 26\%$ and $pK_3^{int} = 4.6; A_3 = 24\%$) and with the hydroxyl (phenolic) groups presumed to be ortho to them $(pK_2^{int} = 3.1, A_2 = 30\%)$ and $pK_4^{int} = 5.6; A_4 = 20\%$) have permitted estimate of site combinations (phthalic, salicylic, dihydroxyl and amino acid in reduced quantity) accessible to multivalent metal ions.

IV. TEST OF REVISED BINDING MODEL

A. <u>Analysis of Cd(II)-Ion Binding Data with Revised Model</u>

To accommodate the results obtained in the analysis of the trace metal ion-binding studies in an acceptable revision of our earlier ion-binding model we have considered the dominant complex species observed to involve the weakly acidic-OH site together with a neighboring-C=O group which replaces the second ortho-positional-OH group in the FA molecule a certain percentage of the time. Indeed when a -C=O group is substituted for ~20% of the second-OH group and the chelate product is assigned a value of 10^6 there is excellent agreement between the experimentally observed and the model-based computation of Cd(II) removal from solution by FA. The β value of ~2 x 10^5 resolved from the ion-exchange distribution measurements at the highest ionic strength is raised to 1 x 10^{6} to accommodate the 80% smaller concentration value assigned to this site in the calculations.

The improvement in ion-binding predictive quality that the above change in the model provides can be seen in Table V where the experimental binding of Cd(II) in one experiment is compared with the model-predicted binding of Cd(II) before $(Cd_b(calc)_B)$ and after $(Cd_b(calc)_A)$ model modification.

Such improvement has convinced us that the revised binding model provides a better assessment of metal ion speciation in the presence of fulvic acid. The next sequence of tables presented are used to demonstrate fully the predictive quality of the newly revised model. All of the Cd(II)-ion binding data obtained with the Armadale Horizons Bh fulvic acid prior to this study and with the Armadale Horizons Bh and Swedish aquatic fulvic acid in this research period are summarized in these Tables. The model predicted binding of Cd(II) is compared with the experimentally observed binding of Cd(II) in the last two columns of these tables.

Once again the stability parameters employed in the model-based computations are literature-based. All four unidentate complexes were assigned the same value of 2.5 x 10^1 . Unlike copper, the stability constant, β_{CdHA} + of the unidentate complex formed by the cadmium with carboxylic acids is essentially insensitive to the varying acidic nature of the carboxylic acid. The β_{CdA} value of 7 x 10^2 selected for the phthalatelike chelate and the K_{Ex} values of 2.7 x 10^{-7} , 1.6 x 10^{-2} , and 1.2 x 10^{-3} , used respectively for the salicylic acid-like, the aminocarboxylic, and the dihydroxyl sites, are consistent with the appropriately larger literature-based values¹¹ of 2.882 x 10^3 , 2.7 x 10^{-2} , 1.6 x 10^1 , and 1.6 x 10^{-2} assigned to the corresponding Cu(II)-complexed species. The β value of 1 x 10^6 assigned to the third hydroxyl complexed species though somewhat larger than the formation constant of its analog, cadmium acetyl acetonate (log $\beta_{calc} > 5$) is considered reasonable.

On the whole agreement between experimentally-based estimates of bound Cd(II) and the newly revised model-based predictions are well within the uncertainty limits of the potentiometric measurements, calibration of the Cd(II)-ion selective electrode just prior to and immediately after completion of a number of these research periods experiments having shown that the E_o of the electrode could shift from 1 to 4 mV over the time interval of the measurement program. For example, the discrepancy between $Cd_b(calc)$ and $Cd_b(exp)$ at the beginning of the experiment summarized in Table V would, on this basis, indicate such a shift in E_o was in progress right from the start of the measurement program. The ract that the value of pCd appears to pass through a minimum with the early addition of base is contrary to mass-action based expectations and has to be a reflection of such bias in the initial potentiometric measurements of Cd(II).

A similar discrepancy between $Cd_b(calc)$ and $Cd_b(exp)$ at the beginning of both experiment A listed in Table VI and the only experiment listed in Table VIII is believed to arise from this same phenomenon. The irreproducible nature of this source of discrepancy is, however, apparent from inspection of the second and third set of data listed in sections B and C of Table VI and third set of data listed in section C of Table VII. In these experiments agreement between $Cd_b(exp)$ and $Cd_b(calc)$ is excellent at the start with divergence occurring later in the experiments. Drift in the E_o value apparently developed more slowly in these experiments. The agreement between $Cd_b(exp)$ and $Cd_b(calc)$ for the experiments listed in sections A and B of Table VII on the whole is excellent to indicate electrode stability throughout these experiments.

B. Analysis of Cu(II)-Ion Binding Data with Revised Model

In order to determine whether the revised model provides as good or better assessment of Cu(II)-ion speciation tendencies in the presence of fulvic acid than the earlier model representative Cu(II)-ion binding data obtained with the Swedish fulvic acid sample in the research period under review have been analyzed by both approaches (see Appendix I, II and IV for a detailed description of the unmodified model). In the only revision of the earlier model the stability constant of the carbonyl, hydroxyl chelated Cu(II), presumed to be formed with about 20% of the OH sites previously identified with the FA molecule, has been assigned a value of 10^9 ; the order of magnitude of this parameter is comparable to the published value for its acetyl acetonate analog¹¹ and justifies this assessment.

The results of these computations of bound Cu(II) by the two models employed are listed in columns 4 $(Ca_b(calc)_B)$ and 5 $(Ca_b(calc)_A)$ of Table X together with the experimentally based values $(Ca_b(exp))$ presented in column 6. The subscripts B and A identify the model employed in the computation, B referring to the model before revision and A, to the model after revision.

The improvement in predictive quality is less startling in this system than it was in the case of the Cd(II), FA, $NaNO_3$ system. Upon reflection this observation is not unexpected. Whereas the binding of Cd(II) ion by the proposed sites is dominated by the proposed site such is not the case with the Cu(II)-ion where the binding by the other sites is much more competitive. As a consequence the binding of Cu(II) is essentially more buffered.

Additional representative Cu(II)-ion binding data obtained at different experimental conditions from those presented in Table X are listed in Tables XI and XII to test further the predictive quality of the revised model. In Table XI the data reported were obtained as before with Cu(II) and FA present at a fixed molar ratio but in a lower ionic strength (0.010 M NaNO₃) medium. The experiment summarized in Table VII was carried out in 0.10 M NaNO₃ by adding $Cu(NO_3)$ stepwise to FA at a previously fixed degree of neutralization.

C. <u>An Additional Test of the Revised Model in a Limited Analy-</u> sis of Ca(II)-Ion Binding to Horizons Bh Fulvic Acid

Because of the restricted concentration and pH range in which the Ca(II)-ion selective (liquid membrane) electrode can be reliably employed study of the binding of Ca^{+2} ion to the fulvic acid molecule had to be limited to a relatively high concentration level of FA (0.288 millimoles in 50 ml) and an elevated pH range (6.4 to 7). The need for use of such sizeable quantities of FA in an experiment precluded the performance of any experiments with the limited supply of Swedish fulvic acid that was accessible to us.

In the only kind of experiment that was feasible 0.288 millimoles of FA contained in 50.0 ml of 0.10 M $NaNO_3$ were neutralized with standard base until a pH of 7 was reached. Calcium nitrate solution was then added stepwise. The pH and pCa of the equilibrated system were measured after each addition of $Ca(NO_3)_2$. To assure consistency in the measurement of free Ca⁺² ion the electrode was calibrated, before and after an experiment by adding $Ca(NO_3)_2$ to the FA-free but otherwise equivalent NaNO₃ solution (pH ~6.8). Only the free Ca⁺² ion concentration range in which the duplicate calibrations were reproduced to within 0.3 mV was used to compute the fulvic acid bound Ca (Ca_b(exp)). These Cab(exp) data are compared in Table XIII with the revised modelbased computation of bound Cu ($Cu_b(calc)$). In the computation the four unidentate stability constants, β_{CaHA} +, were assigned a common value of 1.7 x 10^1 to correspond to the formation constant that is characteristic of the unidentate carboxylate complexes formed with Ca^{+2} ion. Because there is little tendency for any special interaction of Ca^{+2} ion with the N atom of an aminocarboxylic moiety the possibility of the formation of such a chelate in the fulvic acid molecule was considered unlikely. The three other chelate possibilities and the additional one introduced in the revised model were considered in the computations. The formation constant of the Ca^{+2} -ion chelate with the phtalic acid-like site was assigned a value of 7.0 x 10^2 just as it had been before in the analysis of Cd⁺² ion binding to fulvic acid. The K_{Ex} values of 2.7 x 10^{-7} and 10^{-3} used to facilitate estimate of the quantities of Ca^{+2} -ion bound to the salicylic acid-like moiety and the dihydroxyl site were the same and slightly smaller than the parameters used to describe the binding of Cd^{+2} ion to these proposed sites. The assignment of parameters of this order of magnitude and similarity is consistent with their literature values

in the several simple molecules they are considered to resemble in the heterogeneous array of sites that constitute the fulvic acid molecule. Finally, the carbonyl, hydroxyl chelate introduced into the revised form of the earlier computation model was reduced from the values of 10^6 and 10^9 assigned to the Cd(II) and Cu(II) chelates to a value of 1 x 10^4 to correspond with the much lower potential for interaction of Ca⁺² ion with acetyl acetonate, the analog of this last chelating group presumed to exist in the fulvic acid molecule.

Representative data that were obtained as described above are summarized in Table XIII. Once again there is good correlation between the model-based predictions and experiment to attest to the sizeably broad scope of its applicability.

V. SUMMARY AND CONCLUSION

A. The Protonation Properties of a Swedish Fulvic Acid

Potentiometric studies of the neutralization of a Swedish (aquatic) fulvic acid with standard base in aqueous and non-aqueous media have been conducted. Analysis of the results have shown that the protonation behavior of this fulvic acid material is a reflection of (1) its polyelectrolyte nature and (2) its functional heterogeneity as it is with the other fulvic acids examined similarly. The several different functional units (carboxylic and -OH) that comprise this fulvic acid molecule are sufficiently different in acid strength to dominate the large change in apparent $pK(pK^{app})$ with degree of neutralization (α) just as they FA did in the other sources. The polyelectrolyte contribution to the steadily increasing perturbation of the protonation equilibria with α has been estimated as it was with the Armadale source from the vertical displacement of the $pK_{r_{A}}^{app}$ versus α plots at FA the different ionic strength levels (0.0010, 0.010, 0.005 and 0.10) examined.

The relationship between pK_{FA}^{app} and pH at every ionic strength employed has been examined as well and the results obtained show that the Swedish fulvic acid molecule is impermeable to simple neutral salt just as the other fulvic acid molecules studies are. The divergence with increasing α of the curves obtained at different ionic strength levels shows that the Swedish fulvic acid molecule is a good deal more flexible than the Armadale and Suwannee River FA molecules.

Resolution of the functional site heterogeneity combined with assignment of their relative abundance and the intrinsic pK values associated with them has been facilitated as it was with the other fulvic acid sources by cancelling the calculated contribution to pK_{FA}^{app} of the increasing charge on the fulvic acid molecule surface in the course of its neutralization with standard base. The additional insight gained with respect to the carboxylic and OH content of the Swedish fulvic acid molecule from the potentiometric examination in non-aqueous medium of the neutralization of the fulvic acid in the presence of an internal reference standard, parahydroxybenzoic acid, and from the protonation enhancement in aqueous medium, affected by the addition of both Eu(III) and Cu(II) to the fulvic acid sample, has further facilitated the assignments of functional sites, their abundance and their acidity just as it did in the earlier examination of the Armadale Horizons Bh fulvic acid and the Suwannee River fulvic acid.

Study of the enhancement of proton release from the Swedish fulvic acid molecule by the presence of either an excess of Cu^{+2} or an excess of Eu^{+3} ion in the same way as before has provided additional insight with respect to the accessibility for chelation of heavy metal ions of bidentate sites in the Swedish fulvic acid molecule. Comparison of these data with similar data obtained with the Armadale Horizons Bh fulvic acid and the Suwannee River reference fulvic acid has shown that the Swedish FA like the Armadale FA and unlike the Suwannee River FA, contains both salicylic acid-like sites and dihydroxyl sites. The less effective removal of Cu^{+2} ion by the Swedish FA in comparison with the Armadale FA over the pH range studied has been attributed to (1) a significantly smaller presence of an amino site that is present in the Armadale FA and to (2) the lower covalency of the Cu-0 bonds originating in the more acidic sites associated with the Swedish FA sample.

Finally the site assignments and their combination with each other $(pK_1^{int} = 1.7, A = 26\%$ and $pK_3^{int} = 4.6, A = 24\%$) and with the hydroxyl (phenolic) groups presumed to be ortho to them $(pK_2 = 3.1, A = 30\%$ and $pK_4 = 5.6, A = 20\%$) have permitted estimate of site combinations (phthalic, salicylic, dihydroxyl, and amino acid (in reduced quantity) accessible to multivalent metal ions.

B. Further Development of & Model for the Anticipation of Metal Ion Speciation in the Presence of Fulvic Acid

By using stability constants from the literature for Cu^{+2} ion complexed speciec most closely resembling the uni- and bidentate complexes presumed to be formed with the above sites and by correcting for non ideality introduced by the potential field emanating from the charged surface of the fulvic acid molecule it was

possible to predict the Cu^{+2} ion binding characteristics of Armadale Horizons Bh and Suwannee River fulvic acid at different conditions. The computed complexation behavior compared favorably with the experimentally observed complexation behavior of the Cu^{+2} ion.

In this study the facility for estimating metal ion speciation tendencies in the presence of fulvic acid has been further enhanced. Reanalysis of cation-exchange distribution data obtained with trace concentration levels of several metal ions (Eu(III), Zn(II), Co(II) and Cd(II)) indicated that the model developed earlier to anticipate Cu(II)-ion binding was in need of some modification. It was deduced that about 20% of the OH sites of the FA molecule that were previously considered to be located next to another, more weakly acidic group in a bifunctional mode, were instead ortho to another potentially reactive functional unit tentatively identified as a carbonyl moiety. Substitution of this chelation unit for 20% of the dihydroxyl sites led to a capability, not available with the earlier model, for anticipating the complexation properties of Cd(II) to fulvic acids. The formation constant of 10^6 assigned to this proposed complex of Cd(II) on the basis of our analysis of the cation-exchange distribution measurements with trace-level concentrations of Cd(II) is in reasonable accord with the formation constant of $>10^{5}$ reported in the literature for the acetyl acetonate complex of Cd(II) that it is presumed to resemble.

With the substitution of the above site for 20% of the dihydroxyl site employed in the computation of metal ion speciation with Armadale Horizons Bh and the Swedish aquatic fulvic acid the predictive quality of the computations was measurably improved. The neglect of this aspect in the earlier analysis procedure, while not noticeably affecting the predictive quality of the approach for speciation estimates in the Cu(II)-FA system, had been noticeably detrimental to such estimates for the Cd(II)-FA system.

Demonstration of the applicability of the modified approach for anticipating speciation of Ca(II) in the Ca(II)-FA system in the present research period is supportive of the very important claim that our revised model is generally applicable for anticipating speciation tendencies of various multivalent ions in the presence of fulvic acid.

C. Refinement of Earlier Estimates of the Effect of Fulvic Acid at the Low Concentration Levels Encountered in Deep Ground Waters on the Speciation of Trace Quantities of Eu(III)

On the basis of the reanalysis of our earlier cation-exchange distribution study of trace-level concentrations of Eu(III) in the presence of low concentration levels of Armadale Horizons Bhfulvic at different degrees of neutralization and in the presence of different concentration levels of simple uni univalent electrolyte the following estimate of the speciation responses of the Europium to these experimental variables can be made:

a) At trace-level concentrations of Eu(III) the uniquely dominant species at any pH and ionic strength encountered in deep ground water will be the complex formed between the Eu(III) and the

0 OH (-R-C-C-) H

site presumed to be present as approximately 5% of the total acidity measurable in aqueous solutions of fulvic acid. Its formation constant is approximately 10^{10} . In most situations likely to be encountered essentially complete sequestering of the Eu(III) by this FA site must occur.

b) Only in those situations where the underground water source contains macro-levels of Cu(II) or Fe(III) can essentially complete complexation of trace levels of Eu(III) be successfully opposed.

VI. REFERENCES

- Marinsky J.A., "An Interpretation of the Sensitivity of Weakly Acidic (Basic) Polyelectrolytes (Cross-Linked and Linear) Equilibria to Excess Neutral Salt, J. Phys. Chem., 89, 0000 (1985).
- Gamble D., Marinsky J.A. and Langford C., "Humic-Trace Metal Ion Equilibria in Natural Waters", in "Ion Exchange and Solvent Extraction, ed. by J.A. Marinsky and Y. Marcus, for Marcel Dekker, Inc., New York, New York, <u>9</u>, Ch. 7, 373-482 (1985).
- J.A. Marinsky and M.M. Reddy, "Proton and Metal Ion Binding to Natural Organic Polyelectrolytes - I. Studies with Synthetic Model Compounds", Org. Geochem., <u>7</u>, 207-214 (1984).
- J.A. Marinsky and M.M. Reddy, "Proton and Metal Ion Binding to Natural Organic Polyelectrolytes - II. Preliminary Investigation with a Peat and a Humic Acid", ibid., <u>7</u>, 215-221 (1984).

- 5. Marinsky J.A., Wolf A. and Bunzl K., "The Binding of Trace Amounts of Lead(II), Copper(II), Cadmium(II), Zinc(II) and Calcium(II) to Soil Organic Matter", Talanta, <u>27</u>, 461-468 (1980).
- Marinsky J.A., Gupta S. and Schindler P., "The Interaction of Cu(II) Ion with Humic Acid", J. Colloid Interface Sci., <u>89</u>, 401-411 (1982).
- 7. Ephraim J., Alegret S., Mathuthu A. and Marinsky J.A., "The Influence of Polyelectrolyte Properties and Functionality Heterogeneity on the Protonation Equilibria of Armadale Horizons Bh Fulvic Acid", J. Env. Sci. and Tech., submitted 1985.
- 8. Ephraim J., Marinsky J.A. and Malcolm P.L., "The Influence of Polyelectrolyte Properties and Functionality Heterogeneity on the Protonation Equilibria of Suwannee River Fulvic Acid", J. Env. Sci. and Tech., submitted (1985).
- 9. Mathuthu A., Bicking M., Ephraim J. and Marinsky J.A., "The Influence of Polyelectrolyte Properties and Functional Heterogeneity on the Protonation Equilibria of a Swedish Aquatic Fulvic Acid", J. Env. Sci. and Technology, submitted 1985.
- Ephraim J. and Marinsky J.A., "The Influence of Polyelectrolyte Properties and Functional Heterogeneity on the Copper-Ion Binding Equilibria in an Armadale Horizons Bh Fulvic Acid Sample", J. Env. Sci. and Technology, submitted 1985.
- Sillén L.G. and Martell A.E., "Stability Constants of Metal-Ion Complexes", The Chemical Society, Burlington House, London (1964).
- Marinsky J.A., Ephraim J., et al., Progress Reports to KBS (1982, 83).

Table I.

The Binding of Trace Concentration Levels of $Zn^{+2}(Zn^{65})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

рН	D	$\frac{D_0 - D}{D}$	$\frac{D_o - D}{D} - \frac{\Sigma M_b}{M_f}$	β 10 ⁵
3 4 24	988 9	0.2937	0, 2501	5,143
3.427	1033	0.2385	0.1951	4.029
3.682	1004	0.2747	0.2139	2.431
3.660	1003	0.2750	0.2160	2.581
3.945	867.3	0.4750	0.3875	2.408
3.961	987.4	0.2956	0.2062	1.235
4.133	757.8	0.6882	0.5746	2.321
4.084	762.9	0.6768	0.5706	2.579
4.398	482.5	1.651	1.490	3.288
4.447	466.0	1.745	1.573	3.107
4.945	267.8	3.778	3.476	2.245
4.810	333.3	2.839	2.577	2.246
4.787	295.9	3.323	3.067	2.814
5.632	91.61	12.96	12.30	1.901
5.827	69.01	17.54	16.66	1.807
5.709	90.13	13.19	12.46	1.667
4.414	491.0	1.605	1.440	3.066
6.202	42.33	29.22	27.54	1.695
6.492	37.37	33.23	30.23	1.357
5.571	90.73	13.10	12.49	2.170
D	= 1279			
о м	$= 0.6002 \times 10^{10}$	-4		
¹¹ FA		,		
β _{uni}	$= 5.0 \times 10^{-1}$			
$^{\beta}$ phth chel	$= 7.82 \times 10^2$			
K ^{Ex} sal	$= 7.08 \times 10^{-7}$,		
K ^{Ex} amino carb	= 0.016			
K ^{Ex} evol	$= 2.0 \times 10^{-5}$			

I

•

= 0.10 M NaCl

•

Table IIA.

The Binding of Trace Concentration Levels of $Co^{+2}(Co^{60})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

рН	D	$\frac{D_{o}-D}{D}$	$\frac{D_o - D}{D} - \frac{\Sigma M_b}{M_f}$	β 10 ⁵
4.055	1 250	0.1439	0.1254	3.334
3.940	1 200	0.1917	0.1762	6.102
4.106	1 24 2	0.1510	0.1309	3.097
3.967	1245	0.1489	0.1327	4.320
4.130	1 24 2	0.1509	0.1301	2.912
3.987	1 28 2	0.1153	0.09866	3.067
5.133	1058	0.3513	0.2702	0.6241
4.112	1066	0.3418	0.3215	7.503
4.702	1068	0.3395	0.2910	1.766
6.515	539.7	1.650	1.052	0.1967
5.253	1007	0.4198	0.3275	0.5812
4.149	1178	0.2136	0.1921	4.119
7.292	298.5	3.791	0.6280	0.06938
4.576	1160	0.2332	0.1923	1.554
4.661	1140	0.2543	0.2084	1.388
4.255	1158	0.2348	0.2094	3.521
6.810	477.0	1.998	0.8989	0.1274
5.009	1026	0.3940	0.3234	0.9835

Do	=	1430
M _{FA}	=	1.109×10^{-4}
β _{uni}	=	3.0×10^{1}
^β phth chel	=	7.82 x 10^2
K ^{Ex} sal	=	7.08 x 10^{-7}
K ^{Ex} amino carb	=	1.6×10^{-2}
K ^{Ex} evol	=	1.3×10^{-5}
I	E	0.10 M NaCl

рН	D	D _o -D D	$\frac{D_{o}-D}{D} - \frac{\Sigma M_{b}}{M_{f}}$	$\frac{B}{10^5}$
3.410	1153	0.2404	0.2037	4.028
3.420	1218	0.1743	0.1371	2.649
3.617	1044	0.3702	0.3206	3.938
3.608	1066	0.3412	0.2923	3.665
3.695	1088	0.3139	0.2579	2.648
3.654	1051	0.3610	0.3085	3.480
3.892	891.3	0.6043	0.5281	3.450
3.857	880.6	0.6239	0.5518	3.9 05
4.137	726.5	0.9683	0.8565	3.191
4.025	819.0	0.7460	0.6521	3.139
4.317	644.2	1.220	1.073	2.650
4.206	692.2	1.066	0.9417	2.996
4.391	574.5	1.489	1.326	2.765
4.737	383.0	2.734	2.477	2.360
6.416	33.74	41.38	38.61	1.627
6.425	11.77	120.5	117.7	4.913
6.879	13.62	104.0	96.61	2.839
6.447	24.26	57.94	54.99	2.244
6.362	25.46	55.17	52.67	2.356
5.595	99.62	13.35	12.67	1.921
9.205	6.940	205.1	-1288	-29.25
8.945	6.480	219.7	- 601.1	-13.66
6.291	37.86	36.77	34.60	1.683
6.352	33.26	41.99	39.55	1.789
6.753	14.46	97.89	92.27	2.919

Table IIB. The Binding of Trace Concentration Levels of $Co^{+2}(Co^{60})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

 $M_{FA} = 9.283 \times 10^{-4}$

All other parameters the same as in Table IIA.

.

Bh-ruivic Acid.						
рН		D _o -D	D ₀ -D ΣM _b	β		
	10 ²	D	D M _f	10 ⁵		
4.239	847.8	0.6867	0.5602	2.557		
4.253	811.1	0.7630	0.6338	2.801		
4.423	888.7	0.6091	0.4404	1.317		
4.403	798.7	0.7904	0.6269	1.963		
4.648	663.4	1.156	0.9153	1.634		
4.752	769.0	0.8596	0.5777	0.8131		
4.962	473.1	2.023	1.639	1.429		
5.163	406.2	2.520	2.018	1.115		
5.350	352.0	3.063	2.431	0.8816		
5.180	270.6	4.285	3.771	2.005		
5.449	220.0	5.500	4.793	1.393		
4.802	200.0	6.150	5.846	7.339		
6.083	83.23	16.18	14.73	1.107		
6.504	46.95	29.46	26.77	0.9283		
6.519	66.34	20.56	17.80	0.6023		
5.780	91.11	14.70	13.68	1.928		
5.400	170.5	7.387	6.718	2.178		
6.380	73.25	18.52	16.32	0.6993		

Table IIC.	The Binding	of	Trace	Conc	entration	Levels	of
	$Co^{+2}(Co^{60})$ to	the	R-OH	Sites	in Armada	ale Horiz	ons
	Bh-Fulvic Acid						

Do	= 143,000
M _{FA}	$= 9.968 \times 10^{-5}$
I	= 0.010 M NaCl

All other parameters the same as in Table IIA.

Table IID. The +2

The Binding of Trace Concentration Levels of $\text{Co}^{+2}(\text{Co}^{60})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

рH	$\frac{D}{10^2}$	$\frac{D_o - D}{D}$	$\frac{D_o - D}{D} - \frac{\Sigma M_b}{M_f}$	β 10 ⁵
3.600	178.2	7.026	6.777	22.83
3.570	204.2	6.002	5.762	20.80
3.696	116.5	11.27	10.99	29.69
3.834	195. 0	6.335	5.989	11.78
4.042	123.1	10.61	10.14	12.37
4.035	136.0	9.516	9.049	11.21
4.296	43.70	31.73	31.02	21.11
4.280	62.95	21.72	21.03	14.85
4.587	42.30	32.80	31.70	11.08
4.588	66.89	20.38	19.27	6.720
4.999	29.17	48.02	46.07	6.311
5.078	17.05	82.87	80.72	9.255
5.513	13.38	105.9	102.4	4.484
5.626	11.85	119.6	115.7	3.977
5.787	8.443	168.4	163.6	4.018
6.357	2.998	475.9	465.0	3.982
6.322	3.305	431.7	421.4	3.817
6.459	2.563	557.0	543.9	3.987
6.651	1.963	727.6	708.8	4.017
6.655	1.971	724.5	705.6	3.979
6.772	1.750	816.3	792.4	3.914
6.871	1.227	1164	1135	5.083
6.837	1.393	1026	998.7	4.618
7.288	0.7017	2 037	1965	6.612
7.210	0.8051	1775	1715	6.003

 $D_{o} = 143,000$ $M_{FA} = 9.307 \times 10^{-4} M$ I = 0.010 M NaC1

All other parameters the same as in Table IIA.

	Bh Fulv	ic Acid.		
рН	$\frac{D}{10^2}$	$\frac{D_o - D}{D}$	$\frac{D_o - D}{D} - \frac{\Sigma M_b}{M_f}$	$\frac{\beta}{10^5}$
4.875	803	179.0	174.7	13.21
4.895	69 8	206.0	201.6	14.56
5.178	397	363.0	356.5	13.54
5.110	505	285.0	279.1	12.36
5.480	22 0	654.0	644.6	12.45
5.469	227	635.0	625.7	12.38
5.925	741	19 50	1934	14.28
5.939	708	2 040	2024	14.51
6.178	38.3	3770	3748	16.62
6.136	43.8	3300	3279	15.79
6.345	36.1	5540	5512	17.89
6.158	25.1	5750	57 29	26.42
6.465	6.80	21000	20970	55.19
6.488	12.8	11300	11260	28.53
6.504	11.4	127 00	12660	31.24
6.556	11.4	1 2700	1266 0	28.72
M _{FA}	= 1.087 x	10 ⁻³	-	
I	= 0.001 M	NaNO ₂		
β _{uni}	$= 2.5 \times 10^{-10}$	1		
^β phth	$= 7.0 \times 10^{-10}$	2		

•

 K_{sal}^{Ex}

K^{Ex}enol

 $= 2.7 \times 10^{-7}$

 $= 1.3 \times 10^{-5}$

 $\kappa_{amino carb}^{Ex} = 1.6 \times 10^{-2}$

Table IIIA.	The Binding	of	Trace	Conce	ntration	Levels	of
	$Cd^{2+}(Cd^{109})$ to	b the	e R-OH	Sites	in Armada	le Hori:	zons
	Bh Fulvic Acid	•					

-	20-	
---	-----	--

ns $\frac{D_{o}-D}{D}$ $\frac{D_0 - D}{D}$ ΣМЪ D $\frac{\beta}{10^5}$ pН 102 Mf 3.919 228 5.340 4.642 6.870 3.978 204 6.080 5.644 6.851 4.10 154 8.410 7.882 7.228 4.250 136 9.600 8.928 5.802 4.270 121 10.90 10.21 6.335 4.400 85.0 16.00 15.14 6.978 4.500 68.8 20.00 19.00 6.962 4.70 48.5 28.80 27.44 6.368 4.865 37.6 37.40 35.68 5.689 4.900 33.3 42.40 40.59 5.979 5.00 28.3 50.10 48.04 5.643 5.10 23.8 59.60 57.26 5.370 5.20 20.1 70.80 68.17 5.110 5.30 16.8 85.10 82.14 4.930 5.40 14.3 100 96.68 4.655 5.50 11.9 120.0 116.3 4.502 5.60 9.90 145.0 140.8 4.398 5.691 7.73 186.0 181.4 4.671 5.740 10.8 133.0 128.1 2.978 5.850 6.42 224.0 218.3 4.053 5.959 5.37 268.0 261.4 3.910 5.990 5.00 288.0 281.1 3.959 6.004 3.93 367.0 360.0 4.935 6.023 4.69 307.0 299.8 3.963 6.100 4.02 359.0 350.9 4.017 6.20 3.38 427.0 417.5 3.994 6.296 2.48 582.0 570.9

4.638

3.894

5.350

4.474

Table IIIB.	The Binding	of	Trace	Conc	enti	ration	Le	evels	of
	$Cd^{2+}(Cd^{109})$ to) the	R-OH	Sites	in	Armada	le	Horiz	ons
	Bh-Fulvic Acid	•							

$$M_{FA} = 1.087 \times 10^{-3}$$

6.472

6.651

6.711

$$M_{FA} = 1.087 \times 10^{-9}$$

I = 0.010 M NaNO₂

2.24

1.29

1.43

All other parameters the same as in Table IIIA.

645.0

1120

1010

629.8

985.8

1099

	Bh Fulv	vic Acid.		
рН	$\frac{D}{10^2}$	D _o -D D	$\frac{D_o - D}{D} - \frac{\Sigma M_b}{M_f}$	β 10 ⁵
4.00	312	3.630	3, 298	3, 911
4.064	2 5 2	4.720	4.352	4.458
4.080	234	5.160	4.783	4.723
4.200	198	6.310	5.855	4.394
4.306	172	7.380	6.847	4.034
4.340	166	7.730	7.170	3.910
4.50	106	12.60	11.90	4.511
4.60	87.6	15.50	14.70	4.444
4.727	74.5	18.40	17.46	3.967
4.752	55.8	24.9 0	23.93	5.141
4.943	45.5	30.80	29.59	4.157
4.97 0	49.0	28.5 0	27.25	3.607
5.10	37.8	37.20	35.76	3,563
5.20	32.3	43.70	42.08	3.382
5.30	27.3	51.9 0	50.08	3.258
5.352	23.0	61.80	59.86	3.495
5.382	22.8	62.40	60.38	3.314
5.500	19.5	73.10	70.75	3.059
5.637	16.9	84.60	81.75	2.709
5.780	13.0	110.0	106.4	2.714
5.711	14.4	99. 00	95.81	2.766

Table IIIC. The Binding of Trace Concentration Levels of $Cd^{2+}(Cd^{109})$ to the R-OH Sites in Armadale Horizons Bh Fulvic Acid.

$$M_{FA} = 4.480 \times 10^{-3}$$

$$I = 0.10 \text{ M NaNO}_3$$

•

All other parameters the same as in Table IIIA.

Table IIID.

The Binding of Trace Concentration Levels of $Cd^{2+}(Cd^{109})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

	D	D _o -D	D ₀ -D ΣΜ _b	 В
	$\frac{1}{10^2}$	D	$\frac{D}{D} - \frac{D}{M_{f}}$	$\frac{10^{5}}{10^{5}}$
3.457	954.1	0.5150	0.4797	7.875
3.500	925.4	0.5620	0.5243	7.797
3.60	854.3	0.6920	0.6480	7.657
3.700	772.6	0.8710	0.8194	7.696
3.791	734.1	0.9690	0.9093	6.93 0
3.9 0	639.6	1.260	1.189	7.055
4.028	569.1	1.540	1.453	6.429
4.100	519.9	1.780	1.682	6.313
4.200	470	2.070	1.956	5.840
4.268	443	2.260	2.133	5.454
4.348	4 04	2.580	2.438	5.193
4.513	329	3.390	3.211	4.702
4.664	281	4.130	3.912	4.073
4.800	233	5.19 0	4.933	3.787
4.9 0	205	6.030	5.741	3.529
5.017	176	7.200	6.870	3.263
5.100	159	8.040	7.677	3.044
5.206	118	11.20	10.79	3.407
5.257	125	10.50	10.06	2.852
5.425	106	12.60	12.06	2.413
5.60	81.2	16.80	16.12	2.281
5.700	71.9	19.10	18.31	2.146
5.800	6 0 .7	22.80	21.88	2.143
5.886	61.2	22.60	21.53	1.821
6.000	47.9	29. 20	27.9 0	1.966
6.100	41.4	33.9 0	32.34	1.967
6.200	35.4	39.8 0	37.91	2.015
6.300	30.9	45.70	43.39	2.042
6.50	26.4	53.7 0	50.87	2.148
6.515	21.6	66.00	62.40	2.364

$$M_{FA} = 1.126 \times 10^{-3}$$

I =
$$0.10 \text{ M} \text{ NaNO}_3$$

All other parameters the same as in Table IIIA.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	υΗ	D	D _o -D	β	
4.954 165 1333 25.32 4.969 176 1250 22.94 4.988 165 1333 23.43 5.043 106 2075 32.19 5.061 116 1897 28.23 5.081 103 2136 30.39 5.088 105 2095 29.34 5.118 104 2115 27.67 5.122 105 2095 27.16 5.143 110 2000 24.72 5.157 80.4 2736 32.77 5.183 139 1583 17.87 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 M_{FA} = 9.0 x 10^{-5} 1 = 0.010 M NaC1 $\frac{2M_b}{M_f} <<<<< \frac{D_o - D}{D} D 10 10 $	$<< \frac{D_o - D}{D}$ D 10 10	F		$\overline{D \times 10^3}$	109
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.954	165	1333	25.32	
4.988 165 1333 23.43 5.043 106 2075 32.19 5.061 116 1897 28.23 5.081 103 2136 30.39 5.088 105 2095 29.34 5.118 104 2115 27.67 5.122 105 2095 27.16 5.143 110 2000 24.72 5.157 80.4 2736 32.77 5.183 139 1583 17.87 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 $D_{o} = 2.20 \times 10^{8}$ $H_{FA} = 9.0 \times 10^{-5}$ $I = 0.010 \text{ M NaCl}$	4.969	176	1 25 0	22.94	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 .9 88	165	1333	23.43	
5.061 116 1897 28.23 5.081 103 2136 30.39 5.088 105 2095 29.34 5.118 104 2115 27.67 5.122 105 2095 27.16 5.143 110 2000 24.72 5.157 80.4 2736 32.77 5.183 139 1583 17.87 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 $M_{FA} = 9.0 \times 10^{-5}$ I = 0.010 M NaCl $\frac{\Sigma M_b}{M_f} <<< \frac{D_o^{-D}}{D}$	5.043	106	2075	32.19	
5.081 103 2136 30.39 5.088 105 2095 29.34 5.118 104 2115 27.67 5.122 105 2095 27.16 5.143 110 2000 24.72 5.157 80.4 2736 32.77 5.183 139 1583 17.87 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 $M_{FA} = 9.0 \times 10^{-5}$ I = 0.010 M NaCl $\frac{\Sigma M_b}{M_f} <<< \frac{D_o - D}{D}$	5.061	116	1897	28.23	
5.088 105 2095 29.34 5.118 104 2115 27.67 5.122 105 2095 27.16 5.143 110 2000 24.72 5.157 80.4 2736 32.77 5.183 139 1583 17.87 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 $M_{FA} = 9.0 \times 10^{-5}$ I = 0.010 M NaCl $\frac{\Sigma M_b}{M_f} <<< \frac{D_o^{-D}}{D}$	5.081	103	2136	30.39	
5.118 5.122 5.122 105 5.122 105 2095 27.16 5.143 110 2000 24.72 5.157 80.4 2736 32.77 5.183 139 1583 17.87 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 M_{FA} = 9.0 x 10 ⁻⁵ I = 0.010 M NaCl $\frac{\Sigma M_b}{M_f} <<< \frac{D_o - D}{D}$	5.088	105	2095	29.34	
$5.122 105 2095 27.16$ $5.143 110 2000 24.72$ $5.157 80.4 2736 32.77$ $5.183 139 1583 17.87$ $5.266 60.7 3624 33.94$ $5.310 70.0 3143 26.66$ $M_{FA} = 9.0 10^{-5}$ $I = 0.010 M NaCl$ $\frac{\Sigma M_b}{M_f} <<< \frac{D_o^{-D}}{D}$	5.118	104	2115	27.67	
5.143 110 2000 24.72 5.157 80.4 2736 32.77 5.183 139 1583 17.87 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 $M_{FA} = 9.0 \times 10^{-5}$ I = 0.010 M NaCl $\frac{\Sigma M_b}{M_f} <<< \frac{D_o^{-D}}{D}$	5.122	105	2095	27.16	
5.157 80.4 2736 32.77 5.183 139 1583 17.87 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 $D_{o} = 2.20 \times 10^{8}$ $M_{FA} = 9.0 \times 10^{-5}$ I = 0.010 M NaCl $\frac{\Sigma M_{b}}{M_{f}} <<< \frac{D_{o}-D}{D}$	5.143	110	2 000	24.72	
5.183 5.266 5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 $M_{FA} = 9.0 \times 10^{-5}$ I = 0.010 M NaCl $\frac{\Sigma M_b}{M_f} <<< \frac{D_o^{-D}}{D}$	5.157	80.4	2736	32.77	
5.266 60.7 3624 33.94 5.310 70.0 3143 26.66 $D_{o} = 2.20 \times 10^{8}$ $M_{FA} = 9.0 \times 10^{-5}$ I = 0.010 M NaCl $\frac{\Sigma M_{b}}{M_{f}} <<< \frac{D_{o}-D}{D}$	5.183	139	1583	17.87	
5.310 70.0 3143 26.66 $D_{o} = 2.20 \times 10^{8}$ $M_{FA} = 9.0 \times 10^{-5}$ I = 0.010 M NaCl $\frac{\Sigma M_{b}}{M_{f}} <<< \frac{D_{o}-D}{D}$	5.266	60.7	3624	33.94	
$D_{o} = 2.20 \times 10^{8}$ $M_{FA} = 9.0 \times 10^{-5}$ $I = 0.010 \text{ M NaCl}$ $\frac{\Sigma M_{b}}{M_{f}} <<< \frac{D_{o}-D}{D}$	5.310	70.0	3143	26.66	
so that $\frac{D_o - D}{D_o} - \frac{\Sigma M_b}{D_o} = \frac{D_o - D}{D_o}$	$\frac{2M_{FA}}{M_{f}} < << \frac{D_{o}-D}{D}$ so that $\frac{D_{o}-D}{D} - \frac{\Sigma M_{b}}{D} =$	$\frac{D_{0}-D}{D_{0}-D}$			

Table IVA. The Binding of Trace Concentration Levels of $Eu^{+3}(Eu^{154})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

Table IVB.

The Binding of Trace Concentration Levels of Eu⁺³(Eu¹⁵⁴) to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

рН	D	D _O -D	β	
		$D \times 10^3$	109	
4 705	3, 54	621.5	10.42	
4.758	3.37	652.8	9.693	
4.908	1.60	1375	14.50	
4 958	1.56	1410	13.27	
4.992	1.58	1392	12.12	
5 008	1, 29	1705	14.32	
5 269	49.3	4462	20.76	
5 332	62.7	3509	14.17	
5.625	49-0	4490	9.467	
5.653	47.3	4651	9.226	
5 821	35.3	6232	8.609	
5 005	35 7	6162	7.131	
5.30 0	8 10	27160	12.23	
6.590	10.1	21780	6.903	
6 909	12.0	18330	3.858	
7 169	13 7	16060	2.628	
7.108	10.3	21360	3, 287	
7.249	0.25	23780	3, 224	
7.460	9.23	25700	3, 167	
7.526	9.15	24100	3.480	
7.572	8.13	20990	3 296	
7.652	8.33	20330	J - 290	
7.657	0.27	25850	3 220	
7.665	8.51	23630	5 106	
/./16	5.28	41070	2 882	
7.725	9.33	23360	2.002	
7.835	6.83	32210	3 070	
7.869	6.52	33740	2.212	
7.956	9.08	24 230	2.002	
7.960	9.67	22750	2.027	
8.140	7.23	30430	2.421	
8.426	6.76	32540	5.502	
8.445	4.23	52010	2.000 5.721	
8.816	4.13	53270	J•/J1 / 01/	
9. 084	4.89	44990	4.014	
9.128	7.41	29690	3.1/5	
9.314	3.36	65480	0.98/	
9.400	2.90	75860	8.090	
10.32	8.10	27160	2.000	
9.611	3.59	61280	0.02/	
9.914	4.22	52130	5.547	
D	$= 2.20 \times 10^8$			
M	$= 1.8 \times 10^{-4}$			
TFA T	- 0.010 M N-01			
T	= 0.010 M NaCI			

рH	D	D _O -D	β
		$D \times 10^3$	109
4.347	247	7.286	1.772
4.385	379	4.748	1.059
4.470	2 85	6.315	1.159
4.476	327	5.504	0.9961
4.483	316	5.695	1.014
4.496	243	7.406	1.281
4.525	137	13.14	2.126
4.541	23 0	7.825	1.221
4.544	188	9.573	1.483
4.616	227	7.929	1.042
4.628	286	6.293	0.8046
4.739	20 2	8.910	0.8845
4.801	205	8.779	0.7568
4.854	150	12.00	0.9170
4.894	218	8.256	0.5762

• .

The Binding of Trace Concentration Levels of $Eu^{+3}(Eu^{154})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid. Table IVC.

D _o	$= 1.80 \times 10^7$
M _{FA}	$= 1.30 \times 10^{-4}$
I	= 0.050 M NaCl

-26-

рН	D	D _o -D	β	
		$D \times 10^3$	109	
3.89 0	48.8	4.507	3.813	
3.917	42.4	5.188	4.126	
3.964	43.7	5.033	3.594	
4.064	35.8	6.144	3.489	
4.104	34.4	6.394	3.313	
4.243	22.4	9.820	3.704	
4.282	36.0	6.110	2.108	
4.453	16.0	13.75	3.215	
4.469	14.7	14 .9 6	3.374	
4.662	9.44	23.30	3.397	
4.795	9.50	23.16	2.505	
4.999	3.15	69.84	4.809	
Do	= 2.20×10^5			
¹ FA	$= 9.0 \times 10^{-4}$			
1	= 0.10 M NaCl			

•.

Table IVD. The Binding of Trace Concentration Levels of $Eu^{+3}(Eu^{154})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

рH	D		β	
		$D \times 10^3$	109	
3.604	45.50	0.1781	3.072	
3.678	32.5 0	0.2498	3.635	
3.747	32.60	0.249 0	3.093	
3.820	34.90	0.2325	2.443	
3.831	38.80	0.2091	2.142	
Do	$= 8.15 \times 10^3$			
M _{FA}	$= 9.0 \times 10^{-5}$			
T	= 0.30 M NaCl			

Table IVE. The Binding of Trace Concentration Levels of $Eu^{+3}(Eu^{154})$ to the R-OH Sites in Armadale Horizons Bh-Fulvic Acid.

Vol Base ml	рН	pCd	Cd _b (calc) _B µmoles	$Cd_b(calc)_A$ µmoles	Cd _b (exp) µmoles
0.040	3.382	3.781	0.23797	1.0747	0.46452
0.060	3.427	3.725	0.31284	1.3511	0.67955
0.030	3.449	3.781	0.20177	1.0237	0.46618
0.12	3.539	3.788	0.28356	1.3518	0.58397
0.16	3.616	3.800	0.31600	1.5149	0.80018
0.018	3.680	3.807	0.15058	0.99984	0.94943
0.22	3.770	3.822	0.38717	1.8542	1.1838
0.25	3.876	3.833	0.44902	2.1133	1.3686
0.29	3.994	3.852	0.49541	2.3297	1.6790
0.31	4.060	3.870	0.52790	2.4576	1.9634
0.27	3.866	3.885	0.40344	1.9612	2.199 0
0.33	4.171	3.9 08	0.57823	2.6504	2.5295
0.35	4.239	3.926	0.61902	2.7863	2.7797
0.37	4.329	3.9 45	0.68466	2.9 824	3.0330
0.39	4.421	3.971	0.74694	3.1597	3.3630
0.41	4.509	3.994	0.81366	3.3331	3.6389
0.43	4.619	4.024	0.89967	3.5406	3.9 781
0.45	4.712	4.050	0.97432	3.7082	4.2536
0.47	4.837	4.087	1.0731	3.9165	4.6192
0.49	4.938	4.102	1.1926	4.1305	4.7579
0.50	5.011	4.128	1.2420	4.2254	4.9891
0.51	5.058	4.143	1.2785	4 .29 08	5.1161
0.52	5.123	4.166	1.3231	4.3706	5.3028
0.53	5.188	4.184	1.3828	4.4668	5.4421
0.54	5.269	4.210	1.4488	4.5711	5.6337
.55	5.326	4.233	1.4823	4.6253	5.7939
0.56	5.418	4.259	1.5752	4.7555	5.9 651
0.57	5.482	4.281	1.6313	4.8317	6.1022
.58	5.581	4.319	1.7119	4.9369	6.3235
.59	5.661	4.337	1.8308	5.0781	6.4216
.60	5.767	4.371	- 1.968 0	5.2340	6.5965
.61	5.859	4.397	2.1177	5.3959	6.7212
.62	5.9 80	4.434	2.3320	5.6175	6.8865
.63	6.084	4.464	2.5531	5.8379	7.0106

Table V. Cd(II)-Binding in Armadale Horizons Bh Fulvic Acid (Present study period).

Total millimoles FA = 0.070 Total millimoles Cd(II) = 0.00875

-

Table VIA. Cd(II)-Ion Binding to Armadale Horizons Bh Fulvic Acid (Data from Previous Period of Study; I = 0.100 M).

Vol of Base ml	рН	pCd	Cd _b (calc) µmoles	Cd _b (exp) µmoles
0.00	3.087	3.406	2.7080	0.28921
0.10	3.142	3.417	3.0054	0.74392
0.20	3.209	3.434	3.3259	1.4463
0.30	3.2 80	3.452	3.7121	2.1642
0.40	3.361	3.466	4.2506	2.6958
0.50	3.452	3.487	4.8526	3.4801
0.60	3.545	3.504	5.6191	4.0829
0.70	3.658	3.532	6.4827	5.0474
0.80	3.781	3.564	7.4856	6.0822
0.9 0	3.9 07	3.598	8.6006	7.1050
1.00	4.058	3.637	9.9669	8.1895
1.10	4.209	3.693	11.185	9.5980
1.20	4.377	3.756	12.185	10.985
1.30	4.551	3.822	13.098	12.241
1.45	4.828	3.944	14.200	14.124
1.50	4.926	3.9 90	14.502	14.710
1.60	5.143	4.094	15.051	15.828
1.70	5.389	4.206	15.653	16.770
1.80	5.653	4.332	16.239	17.579
1.9 0	5.975	4.472	17.378	18.243
2.00	6.386	4.646	19.620	18.821
2.10	6.886	4.828	24.179	19.223

Total millimoles FA = 0.2239 Total millimoles Cd(II) = 0.020

Cd_b(calc) Cd_b(exp) Vol of Base pH pCd umoles umoles ml 0.00 3.003 3.048 3.055 5.1676 5.4189 0.10 3.062 5.6396 6.0450 0.20 3.119 3.062 6.2565 6.2615 3.168 3.065 0.30 3.079 6.8454 7.5656 3.263 0.40 7.5435 8.8310 0.50 3.351 3.093 10.334 3.110 8.2971 0.60 3.441 3.547 3.123 9.3663 11.428 0.70 13.766 10.245 0.80 3.660 3.151 11.547 15.329 3.171 0.90 3.784 16.396 0.95 3.846 3.185 12.148 10.843 3.912 3.119 15.340 1.00 18.651 1.05 3.981 3.216 13.486 14.337 19.546 3.229 4.053 1.10 15.306 20.686 4.141 3.246 1.15 15.951 21.784 1.20 4.196 3.263 4.277 3.280 16.959 22.841 1.25 24.098 1.30 3.346 3.301 7.4701 19.059 25.631 3.328 4.455 1.36 3.345 19.950 26.549 4.522 1.40 27.788 1.45 4.611 3.369 21.101 22.400 28.962 4.705 3.393 1.50 30.528 23.190 1.55 4.789 3.427 31.726 24.610 4.894 3.455 1.60 23.621 32.652 4.835 3.478 1.65 26.141 34.090 5.109 3.516 1.70 27.023 35.274 3.550 1.75 5.228 36.370 28.068 1.80 5.362 3.584 27.410 3.365 37.810 1.85 5.514 1.90 5.667 3.673 29.962 38.874 40.029 31.361 5.852 3.721 1.95

6.765

3.806

3.871

3.936

4.001

49.991

41.786

42.921

43.899

44.742

1.1203

35.736

39.821

45.292

51.390

Table VIB.	Cd(II)	-Ion	Binding	g in	Arma	dale	Hor	izon	s Bh	Ful	lvi	۱c
	Acid	(Data	from	Previ	ious	Peri	od	of	Study	;	Ι	=
	0.100	M).										

Total millimoles FA = 0.2242 Total millimoles Cd(II) = 0.050

6.052

6.236

6.497

6.771

7.053

2.00

2.05

2.10

2.15

2.20

Vol Base Added ml	рН	pCd	Cd _b (calc) µmoles	Cd _b (exp) µmoles
0.00	3.692	4.086	0.94286	0.85722
0.50	3.9 04	4.118	1.2099	1.1134
1.00	4.172	4.176	1.6670	1.5659
1.50	4.524	4.255	2.5749	2.1093
2.00	5.002	4.413	3.0934	2.9716
2.50	5.677	4.665	3.5966	3.8538
2.75	6.212	4.874	3.8363	4.2883
3.00	6.926	5.130	4.5094	4.6034
3.25	7.938	5.486	6.2722	4.8245

•

Table VIIA. Cd(II)-Ion Binding to Armadale Horizons Bh Fulvic Acid (Data from Previous Period of Study; I = 0.010 M).

Total millimoles FA = 0.0272 Total millimoles of Cd(II) = 0.0050

Vol Base Added pH pCd Cd _b (calc) Cd _b m1 µmoles µmo 0.00 3.546 4.094 0.94300 0.9 0.10 3.566 4.094 1.0066 0.9 0.20 3.588 4.098 1.0586 0.9	(exp) les
mi pmotes pmotes 0.00 3.546 4.094 0.94300 0.9 0.10 3.566 4.094 1.0066 0.9 0.20 3.588 4.098 1.0586 0.9	
0.00 3.546 4.094 0.94300 0.9 0.10 3.566 4.094 1.0066 0.9 0.20 3.588 4.098 1.0586 0.9	
0.00 3.546 4.094 0.94300 0.9 0.10 3.566 4.094 1.0066 0.9 0.20 3.588 4.098 1.0586 0.9	2 202
0.10 3.586 4.094 1.0066 0.9 0.20 3.588 4.098 1.0586 0.9	3283 2/70
0.20 3.588 4.098 1.0586 0.9	2478
	5417
0.30 3.611 4.101 1.1186 0.9	/409
0.40 3.633 4.105 1.1818 1.0	031
0.60 3.688 4.116 1.3033 1.0	378
0.80 3.749 4.127 1.4504 1.1	707
1.00 3.806 4.142 1.6134 1.2	363
1.20 3.878 4.167 1.7595 1.4	304
1.40 3.955 4.182 1.9948 1.5	368
1.60 4.043 4.211 2.2093 1.7	949
1.80 4.137 4.248 2.4325 2.04	454
2.00 4.239 4.288 2.6944 2.2	951
2.10 4.293 4.303 2.8720 2.3	319
2. 20 4. 350 4. 339 2. 9577 2. 5	356
2.30 4.402 4.361 3.1156 2.7	005
2.40 4.474 4.405 3.2140 2.92	181
2.50 4.546 4.445 3.3460 3.04	9 77
2.70 4.687 4.518 3.6705 3.33	360
2.90 4.833 4.603 3.9913 3.60	579
3.10 4.996 4.701 4.3350 3.92	330
3.30 5.174 4.815 4.8312 4.1	763
3.50 5.374 4.950 4.8480 4.3	941
3.70 5.577 5.089 4.8329 4.5	584
4.00 5.927 5.305 4.8706 4.7	300
4.20 6.198 5.481 4.8930 4.83	193
4.40 6.492 5.667 4.9868 4.8	318
4.60 6.855 5.861 5.3090 4.9	241
4.70 6.999 5.942 5.4503 4.9	369

Table VIIB. Cd(II)-Ion Binding to Armadale Horizons Bh Fulvic Acid (Data from Previous Period of Study; I = 0.010 M).

Total millimoles FA = 0.05454 Total millimoles of Cd(II) = 0.0050

(11) = 0.0

<u></u>				
Vol Base				
Added	рH	pCd	Cd _b (calc)	Cd _b (exp)
ml			µmoles	µmoles
0.00	3.581	4.581	0.34902	0.68064
0.25	3.628	4.581	0.42943	0.67408
0.50	3.689	4.584	0.52397	0.67668
0.75	3.766	4.599	0.62660	0.71524
1.00	3.846	4.627	0.74247	0.78944
1.25	3.944	4.663	0.88660	0.88015
1.50	4.060	4.710	1.0693	0.98993
1.75	4.180	4.767	1.2944	1.1096
2.00	4.320	4.835	1.5834	1.2347
2.25	4.494	4.950	1.8663	1.4095
2.50	4.671	5.072	2.2032	1.5515
2.75	4.876	5.223	2.6560	1.6811
3.00	5.094	5.405	2.6945	1.7886
3.25	5.325	5.599	2.7211	1.8634
3.5 0	5.571	5.818	2.7035	1.9163
3.75	5.8 60	6.065	2.6935	1.9515
4.00	6.159	6.302	2.6986	1.9710
4.25	6.514	6.542	2.7345	1 .9 824
4.50	6.927	6.803	2.6858	1.9894

.

Table VIIC. Cd(II)-Ion Binding to Armadale Horizons Bh Fulvic Acid (Data from Previous Period of Study; I = 0.010 M).

Total millimoles FA = 0.0542 Total millimoles Cd(II) = 0.0020

Vol Base				
Added	рН	pCd	Cd _b (calc)	Cd _b (exp)
ml	····		umoles	µmoles
0.02	3.520	3.647	1,1585	0.41429
0.01	3.510	3.647	1,1140	0.41655
0.03	3.560	3.647	1,1884	0.41204
0.04	3.567	3.643	1.2574	0.30541
0.05	3,593	3.643	1.3021	0.30314
0.06	3.607	3.640	1.2910	0 22191
0.07	3.640	3.643	1.3426	0 29858
0.08	3.652	3.640	1.3700	0.21733
0.09	3.707	3.643	1.4631	0.29403
D.10	3.749	3.643	1.5930	0.29176
0.11	3.764	3.643	1.5693	0.28948
0.12	3.797	3.647	1.6233	0.39175
0.13	3.821	3-651	1.6605	0.49310
),14	3.873	3,651	1.7619	0.49087
0.15	3.892	3.654	1.7925	0.56574
0.16	3.944	3.658	1.8869	0.66554
0.17	3.970	3.661	1.9322	0.73924
1.18	4.027	3.665	2.0387	0.83748
), 19	4.063	3.672	2.0957	1.0089
20	4.117	3.676	2, 1979	1.1047
1. 21	4.150	3.679	2.2594	1.1755
) 22	4.219	3.686	2 3873	1 3/15
), 23	4. 259	3.694	2.4517	1 5 28/
). 24	4.321	3.701	2.5663	1.6889
), 25	4.368	3.708	2.5492	1.8468
25	4.500	3 710	2 8035	1 8901
20	4.489	3 7 20	2.8812	2 1112
. 28	4.565	3 730	3 0214	2.3274
29	4.626	3.744	3, 1162	2.6226
30	4.020	3 755	3 265 2	2.8476
31	4.771	3 765	3 3789	3 0472
32	4.859	3 776	3 5464	3 2617
. 33	4.928	3 791	3,6516	3.5462
34	5.027	3 798	3 8577	3.6748
35	5 101	3 810	3,9517	4.0517
- 36	5.110	3,831	3.9264	4.2583
37	5 303	3 855	4 287 2	4.6565
38	5 414	3 870	4.2072	4 8939
• JO	5 5 7 2	3.870	4.4941	5 1535
40	5.670	3 000	4.0725	5.4751
• - 0	5 803	3 021	5. 23/0	5.7810
· · · ·	5 973	3 0/5	5 6600	5-9673
.72	5.775	3 977	5.0090	6.3727
• • • •	6 35/	J+7//	6 7520	6.6692
• - + + / 5	6 612	4.002	7 8711	6.9926
• •• •	0.013	4.031	/ • 0 2 1 1	

•

Table VIII. Cd(II)-Ion Binding to Armadale Horizons Bh Fulvic Acid (Data from this Period of Study; I = 0.10 M).

Total millimoles FA = 0.04068 Total millimoles Cd(II) = 0.00117

•

Vol Base Added ml	рН	pCd	Cd _b (calc) µmoles	Cd _b (exp) µmoles
0.00	3.820	4.476	0.28972	0.57940
0.20	3.875	4.495	0.31997	0.65483
0.40	3.953	4.499	0.37194	0.66533
0.60	4.029	4.518	0.42239	0.73741
1.00	4.240	4.548	0.59190	0.84313
1.20	4.348	4.560	0.66302	0.88253
1.40	4.493	4.579	0.77199	0.94611
1.60	4.603	4.598	0.85067	1.0072
1.80	4.804	4.617	1.0045	1.0659
2.00	5.009	4.651	1.1321	1.1687
2.20	5.286	4.708	1.2645	1.3274
2.40	5.608	4.735	1.4124	1.3939
2.50	5.821	4.769	1.4868	1.4748
2.60	6.056	4.807	1.5738	1.5584
2.70	6.349	4.856	1.7088	1.6565
2.80	6.692	4.909	1 .9 380	1.7511

Table IXA. Cd(II)-Ion Binding to Swedish Fulvic Acid (Data from this Period of Study; I = 0.10 M).

Total millimoles FA = 0.02759 Total millimoles Cd(II) = 0.002491

-36-

Vol Base Added ml	рН	pCd	Cd _b (calc) µmoles	Cd _b (exp) µmoles
0.00	3 7 7 3	4 459	0 55683	0 62070
0.20	3.892	4.473	0.52239	0.67283
0.40	3.980	4.912	0.19806	0.18175
0.60	4.096	4.503	0.73977	0.78064
0.80	4 . 208	4.525	0.89224	0.85842
1.00	4.355	4.547	1.0888	0 .9 3266
1.20	4.517	4.576	1.3230	1.0271
1.40	4.717	4.621	1.5998	1.1649
1.60	4.930	4.680	1.8875	1.3273
1.80	5.180	4.757	2.0277	1.5105
2.00	5.465	4.867	2.1131	1.7238
2.20	5.465	4.867	2.1131	1.7211
2.40	6.366	5.170	2.3292	2.0990

Table IXB.	Cd(II)-Ion	Binding	to S	wedish	Fulvic	Acid	(Data
	from this P	eriod of	Study	; $I = 0$.	10 M).		

Total millimoles FA = 0.02744 Total millimoles Cd(II) = 0.002476

Vol Base Added ml	рН	pCd	Cd _b (calc) µmoles	Cd _b (exp) µmoles
0.00	3.749	4.745	0.18368	0.23344
0.20	3.788	4.751	0.18634	0.24383
0.40	3.865	4.758	0.21309	0.25643
0.60	3.912	4.765	0.22975	0.26887
0.80	3.9 88	4.772	0.26120	0.28118
1.00	4.053	4.782	0.28858	0 .2999 2
1.40	4.218	4.806	0.36884	0.34474
1.60	4.456	4.813	0.53112	0.35613
1.80	4.604	4.824	0.64047	0.37548
2.00	4.808	4.841	0.79595	0.40616
2.20	5.014	4.861	0.94533	0.44138
2.40	5.320	4.892	1.1352	0.49451
2.60	5.631	4.937	1.2735	0.56654

• .

Table IXC. Cd(II)-Ion Binding to Swedish Fulvic Acid (Data from this Period of Study; I = 0.10 M).

Total millimoles FA = 0.02770

Total millimoles of Cd(II) = 0.001250

The Binding of Cu(II) to Swedish (Aquatic) Fulvic Acid; A Comparison of the Predictive Quality of Two Models.

Vol. NaOH ml	рН	рСи	Cu _b (calc) _B µmoles	Cu _b (calc) _A µmoles	Cu _b (exp) µmoles
0.00	3.970	4.227	0.48167	1.1908	0.82443
0.10	4.013	4.248	0.49309	1.2023	0 .9 5976
0.2 0	4.064	4.255	0.51981	1.2291	0.99979
0.30	4.124	4.262	0.55100	1.2604	1.0393
0.40	4.191	4.272	0.58542	1.2948	1.0970
0.50	4.267	4.276	0.63636	1.3458	1.1166
0.60	4.351	4.283	0.67551	1.3849	1.1545
0.70	4.443	4.293	0.72403	1.4332	1.2098
0.80	4.545	4.307	0.78039	1.4893	1.2874
0 .9 0	4.671	4.317	0.86466	1.5729	1.3401
1.00	4.802	4.335	0.95550	1.6626	1.4357
1.10	4.9 70	4.359	1.0879	1.7923	1.5591
1.20	5.151	4.387	1.2543	1.9530	1.6956
1.30	5.386	4.427	1.5223	2.2052	1.8780
1.40	5.656	4.481	1.9340	2.5760	2.1007
1.50	5.985	4.554	2.6612	3.1993	2.3625
1.60	6.3 04	4.669	3.4326	3.8356	2.6973
1.70	6.596	4.829	3.9811	4.2839	3.0391
1.80	6.953	5.087	4.4018	4.6333	3.38 40
1.90	7.262	5.470	4.1481	4.3992	3.6339

• .

System: FA, $NaNO_3$; I = 0.10 M

Total millimoles FA = 0.01421Total millimoles Cu(II) = 0.003811M_{NaOH} = 0.01007

Vol. NaOH ml	рН	pCu	Cu _b (calc) _B µmoles	$Cu_b(calc)_A$ µmoles	Cu _b (exp) µmoles
0.00	3,926	3 0/8	0 53750	1 2/60	1.0000
0.10	3.941	3.945	0 58324	1.2409	1.9020
0.20	3,987	3.945	0.62117	1 3307	1.0010
0.30	4.042	3.945	0.66524	1 37/8	1.0403
0.40	4.104	3,952	0.70173	1.4112	1.0209
0.50	4.161	3,955	0.75959	1.4690	1.9104
0.60	4.230	3.962	0.81952	1.5288	2.0185
0.70	4.304	3.962	0.92257	1.6317	2.0076
0.80	4.391	3.973	1.0126	1.7214	2.1374
0.9 0	4.495	3.983	1.1002	1.8084	2.2519
1.00	4.607	3.987	1.2346	1.9417	2.2908
1.10	4.737	3.997	1.4021	2.1071	2.4021
1.20	4.867	4.011	1.5829	2.2846	2.5579
1.30	5.011	4.021	1.8238	2.5190	2.6636
1.40	5.222	4.037	2.2404	2.9167	2.8338
1.50	5.445	4.056	2.7840	3.4170	3.0300
1.60	5.730	4.081	3.6864	4.2045	3.2786
1.70	6.023	4.122	4.7552	5.0962	3.6623
1.8 0	6.277	4.168	5.6350	5.8343	4.0535
l .9 0	6.277	4.168	5.6351	5.8344	4.0467
2.00	6.654	4.303	6.4170	6.5071	4 .99 69
2.10	6.799	4.408	6.4838	6.5599	5.5568
2•20	6.920	4.516	6.4895	6.5598	6.0084
2 .3 0	7.052	4.659	6.4450	6.5146	6.4589

System: FA, $NaNO_3$; I = 0.10 M

Total millimoles FA = 0.01421Total millimoles Cu(II) = 0.007622M_{NaOH} = 0.01007

Table XI. An Examination of the Binding of Cu(II) Ion to a Swedish Fulvic Acid.

Vol. NaOH ml	рН	pCu	Cu _b (calc) µmoles	Cu _b (exp) µmoles
0.00	3.894	4.226	1.4538	0.81755
0.10	3.923	4.234	1.5521	0.86635
0.20	3.959	4.248	1.6348	0.95411
0.30	4.011	4.263	1.6996	1.0456
0.40	4.129	4.299	1.5995	1.2606
0.50	4.209	4.299	1.7569	1.2556
0.60	4.297	4.314	1.9027	1.3375
0.70	4.393	4.336	2.0747	1.4551
0.80	4.518	4.373	2.2297	1.6432
0.9 0	4.638	4.416	2.2913	1.8437
1.00	4.781	4.482	2.4126	2.1178
1.10	4.959	4.533	2.6501	2.3025
1.20	5.123	4.606	2.8049	2.5334
1.30	5.365	4.716	3.0253	2.8173
1.40	5.584	4.833	3.1702	3.0505
1.50	5.93 0	5.074	3.2381	3.3736
1.60	6.218	5.359	3.0779	3.5836
1.70	6.556	5.775	2.7574	3.7236
1.80	6.873	6.432	1.9897	3.7917
1.90	7.262	7.404	1.3754	3.8089

System: FA, $Cu(NO_3)_2$, $NaNO_3$; I = 0.010 M

Total	millimoles	FA =	2	0.01421
Total	millimoles	Cu(II) =	=	0.003811

,

Vol. Cu(NO ₃) ₂ ml	рН	pCu	Cu _b (calc) µmoles	Cu _b (exp) µmoles
0.10	5.972	6.688	2.0586	1.0191
0.12	5.943	6.484	2.1477	1.2186
0.16	5.861	6.074	2.3106	1.6033
0.20	5.810	5.790	2.4477	1.9740
0.24	5.742	5.548	2.5871	2.3218
0.28	5.700	5.345	2.7606	2.6442
0.32	5.634	5.198	2.8823	2.9593
0.36	5.603	5.068	3.05 04	3.2534
0.40	5.566	4.938	3.2472	3.5064
0.44	5.531	4.808	3.4915	3.7036
0.48	5.490	4.717	3.6558	3.9217
0.52	5.471	4.658	3.7917	4.1841
0.56	5.458	4.588	3.9938	4.3901
0.60	5.446	4.549	4.1026	4.6715
0.64	5.419	4.493	4.2400	4.8746
0.68	5.407	4.447	4.3918	5.0933
0.72	5.380	4.391	4.5482	5.2407
0.76	5.378	4.423	4.4019	5.8057
0.80	5.372	4.384	4.5529	6.0261
0.84	5.362	4.300	4.9190	5.9636
0.88	5.346	4.268	5.0229	6.1679
) .9 2	5.339	4.219	5.2593	6.2316
) .9 6	5.326	4.191	5.3634	6.4249
1.00	5.316	4.163	5.4831	6.6036
1.04	5.267	4.139	5.4142	6.8026
1.08	5.296	4.100	5.7765	6.8442
1.12	5.28 0	4.076	5.8541	7.0096
1.16	5.275	4.069	5.8754	7.3447
l • 20	5.267	4.051	5.9536	7.5583
• 24	5.265	4.037	6.0354	7.8093
• 28	5.263	4.026	6.0985	8.0903
.32	5.275	4.023	6.1773	8.4632
• 36	5.252	4.009	6.1585	8.7031
.40	5.255	3.988	6.3164	8.8481

System: FA, A⁻, 0.10 M NaNO₃

Total millimoles FA = 0.02842Total millimoles base = 0.0282 $M_{Cu(NO_3)_2}$ = 0.0103

Ca(NO ₃) ₂ ml	рН	рСа	Ca _b (calc) µmoles	Ca _b (exp) µmoles
0.10	6.947	4.737	8.72 80	8.6140
0.12	6.848	4.462	12.787	9.6710
0.14	6.805	4.367	14.303	11.139
0.16	6.784	4.128	21.119	11.380
0.18	6.741	4.106	20.633	13.090
0.2 0	6.725	4.024	23.101	14.140
0.22	6.706	3.989	23.822	15.633
0.24	6.682	3.93 0	25.337	16.754
0.26	6.677	3.9 07	26.092	18.328
0.28	6.656	3.8 85	26.273	19.9 00
0.30	6.644	3.858	26.97 0	21.370
0.32	6.621	3.79 0	29. 045	22.031
0.34	6.606	3.745	30.487	23.001
0.36	6.592	3.732	30.550	24.623
0.38	6.58 0	3.720	30.645	26.259
0.40	6.561	3.713	30.255	28.008
0.42	6.548	3.683	31.131	29. 181
0.44	6.538	3.658	31.908	30.437
0.46	6.524	3.638	32.310	31.797
0.48	6.510	3.619	32.671	33.159
0.50	6.499	3.614	32.485	34.923
0.52	6.493	3.609	32.492	36.685
0.54	6.482	3.599	32.546	38.29 0
0.56	6.474	3.589	32.715	39. 888
0.58	6.462	3.579	32.733	41.479
0.60	6.455	3.564	33.184	42.895
0.62	6.448	3.534	34.379	43.760
0.64	6.437	3.529	34.194	45.49 0
0.66	6.429	3.504	35.127	46.461
0.68	6.420	3.484	35.783	47.579
0.70	6.411	3.387	40.609	. 45.081
0.72	6.400	3.378	40.639	46.529
0.74	6.392	3.365	41.027	47.754

System: FA, A⁻, NaNO₃; Ionic Strength = 0.10

Total millimoles FA = 0.286Total millimoles base = 0.28 $M_{Ca(NO_3)_2}$ = 0.09587

. .

Vol. Ca(NO ₃) ₂ ml	рН	pCa	Ca _b (calc) µmoles	Ca _b (exp) µmoles	
0.20	6.962	4.145	26.029	15,364	
0.30	6.845	3.815	36.365	20,600	
0.40	6.772	3.700	39.062	27,693	
0.42	6.759	3.650	41.099	28.306	
0.44	6.741	3.645	40.586	30,081	
0.46	6.728	3.635	40.551	31.711	
0.48	6.712	3.615	40.916	33.040	
0.50	6.699	3.595	41.416	34.341	
0.52	6.689	3.570	42.325	35.447	
0.54	6.677	3.545	43.160	36.505	
0.56	6.663	3.535	43.093	38.061	
0.58	6.651	3.525	43.115	39.609	
0.60	6.645	3.510	43.680	40.958	
0.62	6.639	3.500	43.972	42.483	
D .6 4	6.633	3.490	44.266	43.999	
0.66	6.612	3.485	43.613	45.709	
0.68	6.599	3.470	43.879	47.002	
) .7 0	6.589	3.455	44.282	48.274	
0.72	6.582	3.430	45.400	49.068	
).74	6.570	3.410	46.019	50.037	
0.76	6.565	3.400	46.378	51.459	
0.78	6.553	3.385	46.717	52.616	
0.80	6.546	3.370	47.289	53.746	
.82	6.543	3.360	47.751	55.120	
.84	6.533	3.320	49.723	54.761	
•86	6.524	3.305	50.233	55.763	
• 88	6.516	3.28 0	51.426	56.089	
• 9 0	6.509	3.275	51.414	57.668	
•92	6.502	3.265	51.720	58.9 08	
•94	6.495	3.250	52.349	59.785	
•96	6.485	3.2 40	52.522	60.9 84	
•98	6.478	3.23 0	52.838	62.167	
• 00	6.468	3.225	52.689	63.7 04	
.98 .00 otal millin	6.478 6.468 moles of FA	3.230 3.225 = 0.288	52.838 52.689	62.167 63.704	
otal millin	noies of ba	se = 0.28	_		
Ca(NO ₃)		= 0.0958	= 0.09587		

System: FA, A^{-} , NaNO₃; Ionic Strength = 0.10

-

•

List of Technical Reports

1977-78

TR 121

KBS Technical Reports 1 – 120. Summaries. Stockholm, May 1979.

1979

TR 79–28

The KBS Annual Report 1979.

KBS Technical Reports 79-01 – 79-27. Summaries. Stockholm, March 1980.

1980

TR 80-26

The KBS Annual Report 1980.

KBS Technical Reports 80-01 – 80-25. Summaries. Stockholm, March 1981.

1981

TR 81-17

The KBS Annual Report 1981.

KBS Technical Reports 81-01 – 81-16. Summaries. Stockholm, April 1982.

1982

TR 82-28

The KBS Annual Report 1982.

KBS Technical Reports 82-01 – 82-27. Summaries. Stockholm, July 1983.

1983

TR 83-77

The KBS Annual Report 1983.

KBS Technical Reports 83-01 – 83-76 Summaries. Stockholm, June 1984.

1984

TR 85-01

Annual Research and Development Report 1984

Including Summaries of Technical Reports Issued during 1984. (Technical Reports 84-01–84-19) Stockholm June 1985.

1985

TR 85-01

Annual Research and Development Report 1984

Including Summaries of Technical Reports Issued during 1984. Stockholm June 1985.

TR 85-02

The Taavinunnanen gabbro massif. A compilation of results from geological, geophysical and hydrogeological investigations. Bengt Gentzschein

Eva-Lena Tullborg Swedish Geologicat Company Uppsala, January 1985

TR 85-03

Porosities and diffusivities of some nonsorbing species in crystalline rocks.

Kristina Skagius Ivars Neretnieks The Royal Institute of Technology Department of Chemical Engineering Stockholm, 1985-02-07

TR 85-04

The chemical coherence of natural spent fuel at the Oklo nuclear reactors. David B. Curtis New Mexico, USA, March 1985

TR 85-05

Diffusivity measurements and electrical resistivity measurements in rock samples under mechanical stress.

Kristina Skagius Ivars Neretnieks The Royal Institute of Technology Department of Chemical Engineering Stockholm, 1985-04-15

TR 85-06

Mechanical properties of granitic rocks from Gideå, Sweden Christer Ljunggren Ove Stephansson Ove Alm

Hossein Hakami Ulf Mattila Div of Rock Mechanics University of Luleå Luleå, Sweden, October 1985