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Correction to the English version of
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J. Stokes, R. Thunvik: INVESTIGATIONS OF GROﬁNDWATER
FLOW IN ROCK AROUND REPOSITORIES FOR NUCLEAR WASTE.

Page 92, figure 4b: The calculated ages of the ground-
water are 100 times to high. All numbers given in the

figure should be decreased by 2 units.
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Summary.

INVESTIGATIONS OF CGROUNDWATERFLOW IN ROCK AROUND REPOSITORIES
FOR NUCLEAR WASTE

T, Groundwater Flow due to Topographical and Geological Effects.

A first investigation of the principal aspects of groundwater

flow when varying topography, hydraulic conductivity and geo-
metri is presented. The groundwater table was assumed coinci-

dent with topography. The conductivity was assumed constant or
exponentially decreasing with depth. The bottom was either fixed
or infinite. Numerical examples containing equipotentials, stream-
lines, lines of equal flux and travel times are presented. Several
profiles in the Forsmark area were analysea to show the effects

of regional flow. This model is based on the analytical solution

of the equations

and

where K(z) = c=e24%2 is the hydraulic conductivity. Here ¢ and u

are empirical constants.

1I. Local Groundwater Depression around a Repository.

A two~dimensional flow analysis was made to study the effect on
the groundwater table due to drainage of the storage tunnels du-
ring the construction resp. operation period. The geometry was

chosen the same as for the principal study in section I. The net
accretion to the phreatic surface was assumed evenly distributed
in space and time. Numerical examples with equipotentials and

consecutive positions of the phreatic surface are presented. The
model is based on the numerical solution of the following equa-

tion of flow:
V2p(x,z,t) = O
The phreatic surface is defined by the following boundary con-

tion:



where ¢ is porosity, n is the elevation of the phreatic surface

and £ is the net accretion.

III. Three-Dimensional Model for Groundwater Flow due to

Topographical and Geological Effects.

As a complement to the two-dimensional computations for the
Forsmark area performed in section I, a three-dimensional flow
model was developed. In this model, which is a finite-element
model, the conductivity is defined separately for each element.
In this way fracture zones have been included as well as a con-
ductivity varying in space. In the equation of flow

g 29 LD g 29, 3 g 20
(x * (K ) * 92z (Kz 3z

3x T x3x 3y y§§ =0

the K-value is subsequently a function of space.

Numerical examples for a K-value eponentially decreasing with
~depth, and with a given geometry of the fracturezones, are stu-
died. The results are presented as equipotentials, travel times

and maps describing conditions of in- and out flow.
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Introduction

Groundwater flow is generally considered a highly complicated
process which is generated by the force of gravity and which

is determined, in detail, by precipitation, topography and by
the nature of the ground. Physically, these properties are de-
scribed in terms of pressure, hydraulic conductivity and poro-
sity, all of which are variable in space. The mathematical di-
ficulties encountered when the equations which determine flow
are to be solved are insurmountable in the general case, Ana-
lytic solutions are known only for certain problems for which
highly simplified conditions can be accepted, and in most cases
one is limited to studying individual examples using numerical
methods., However, it is possible to obtain essential informa-
tion about flow in more realistic examples by studying the
simpler cases. Starting with (among other things) the view-
points set forth by ¥Yngve Gustafsson in the general volume en-
titled Grundvatten (Groundwater)l, different effects are dis-
cussed in this investigation by presenting a number of examples

for which calculations have been carried out,

Even if the mathematical procedure when solving flow equations
can be implemented fully in thrée dimensions, it is usually
difficult to obtain an overall picture of the results. Since
many questions associated with groundwater flow are l-dimen-—
sional or 2-dimensional in nature, all of the examples selected
for this investigation are 2-dimensional. The mathematical pro-
cedure when investigating 2-dimensional flow is presented in an

appendix at the end of this report.

Flow within a specified area is uniquely defined when the pres-
sure head or its gradient is known at the boundary of this

area, Throughout this paper the upper part of the boundary is

1 Yngve Custafsson, Topografins inverkan p& Grundvattenbild-
ningen, Grundvatten (Effect of Topography on Formation of
Groundwater, CGroundwater), pages 15 — 33, Stockholm 1970,



determined by assuming that the groundwater level coincides with
topography. In Sweden precipitation is ordinarily plentiful and
well-distributed with regard to time, Consequently the aforesaid
assumption is a good approximationl. The bottom part of the boun-
dary is assumed impervious and is, in certain examples, at infi-
nite depth, Finally, the area covered by the calculations is boun-
ded by impervious vertical sides. This latter boundary condition
is not always realistic, but its effect on flow can be limited by
locating the sides at long distances from the part of the area in

which one 1is interested.

The first part of this investigation deals with questions invol-
ving principles. To answer these questions, a number of synthetic
examples have been analyzed. The following questions governed,

for the most part, the selection of these examples:

1) What are the differences in flow conditions between (on
the one hand) long stretches of seashores and (on the ot-
her hand) islands (i.e. the plane-parallel case and the
axisymmetric case)?

I1) What are the differences in flow conditions between sea-
shores and valley slopes (how is flow affected by a water
surface)?

I11) What changes when hydraulic conductivity changes?

1v) What flow rates are obtained for typical values of head

differences, conductivity and porosity?
V) What are the flowtimes associated with these flow rates?

Vi) What are the qualitative differences between isotropic
and anisotropic flow?

1 Yngve Gustafsson, Topografins inverkan pad Grundvattenbild-
ningen, Grundvatten (Effect of Topography on Formation of
Groundwater, Groundwater), pages 15 - 33, Stockholm 1970.



Synthetic examples

A set of examples, for which calculations have been carried out

to illustrate and, as far as possible, answer the above questions,

was defined as follows:

To study question I, twe different kinds of flow were investi-

gated:

Ia)

Ib)

2-dimensional flow in the xz-plane., This flow is thus

perpendicular to the y-axis
(examples 1 - 12),

throughout.

Axisymmetric flow around the z-axis in the rz-plane.
This flow is thus such that its directional vector inter-

sects the z-axis throughout
(examples 13 —- 24),

To study question II, two different geometries are provided in

the x-direction and r-direction respectively, as illustrated be-

low:

I1a)

1000

I1b)

1000

Two cases were studied: (a = 50, b = 150) and (a
b = 300). A lake with a flat shore is located with its
water surface a/2 beneath the upper boundary.

(examples 1 - 6, 13 - 18).
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Two study question II1I, flows were investigated for different forms

of depth~dependant conductivity:

I11a) Impervious bottom at a depth of 1000 metres.
The hydraulic conductivity above this depth is constant:
K = 0.000 001 m3/{m?s).

I1Ib) No bottom at finite depth.,
The hydraulic conductivity is constant:
K = 0.0006 001 m3/(m?s),

I11c) Impervious bottom at depth of 1000 metres,
Above this level the hydraulic conductivity decreases
exponentially with depth:

K = K(z) = 0.000 001.100.00132 p3/(m2s)
This very moderate rate of decrease was selected to give
flow patterns which are easy to read. In certain cases,

calculations were carried out using the following empi-
rically obtained function?:

K = K(z) = 0.000 001.100.00302 p3/(m2s)

This is indicated by the letter b appended to the example
number,

Conditions I, II and III have been combined into 24 different exam-
ples which are presented in a lower diagram (showing flow lines and
equipotential lines) and an upper diagram (showing lines of equal

flow in units 109 m3Am?s)). These diagrams appear in figs. 1 - 24,
Details for the lower left and right corners are presented in figs.

25 - 31.

To study question V, flow times are given for several selected

examples in figs. 32 - 38,

The source material for discussion of question VI is theoretical
and is presented, together with the rest of the theory, in the

Appendix,

2 Anders Carlsson, Tommy Olsson, Bestdmning av Berggrundens
Permeabilitet genom VattenfSrlustmitning (Determination of
Groundwater Permeability by measuring Water Loss), Vannet
i Norden No. 3, 1976.
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An overview of all examples appears in the table given below. This

table also contains information about increments in flow function V¥

and potential function ¢ as well as flow |q|.

example | I I1 111 a b c Ay B Aql
1 a a a 50 150 2 2 8
2 a a b 50 150 2 2 8
3 a a c 50 150 2 2 8
4 a a a 100 300 4 4 16
5 a a b 100 300 4 4 16
6 a a c 100 300 4 4 16
7 a b a 75 8 5 8
8 a b b 75 8 5 8
9 a b c 75 8 5 8
10 a b a 150 16 10 16
11 b b 150 16 10 16
12 a b c 150 16 10 16
13 b a a 50 150 0.5 2 8
14 b a b 50 150 0.5 2 8
15 b a c 50 150 0.5 2 8
16 b a a 100 300 1 4 16
17 b a b 100 300 1 4 16
18 b a c 100 300 1 4 16
19 b b a 75 2 5 8
20 b b b 75 2 5 8
21 b b c 75 2 5 8
22 b b a 150 4 10 16
23 b b b 150 4 10 16
24 b b c 150 4 10 16

The following numerical values apply for the hydraulic conductivities

set forth in condition IIIc:

z (meter) | 0.000 001.100.0013z 0.000 001-100.00302
0  0.000 001 00 0.000 001 00
-100 74 50
-200 55 25
~300 41 12
-400 30 061
-500 22 030
-600 | 17 015
-700 12 007
-800 : 091 004
~900 068 002
~1000 050 ) 001




Discussion

A number of aspects of questions I-V can be illustrated by making

a comparative study of figs. 1 - 38. Note that all the illustra-

tions are symmetrical around the left hand vertical axis. This

axis will be called the centre axis. Figs. 1 — 12 are also sym—

metrical around the right hand vertical axis.

I.

IT1,

IITI,

A comparison of the figure pairs (1,13), (2,14), ..., (12,24)
indicates that in the axisymmetric case, the flow quantities
are about four times lower than in the plane-parallel case.
In addition, a flow is obtained that is stronger close to the
center and weaker closer to the periphery for axisymmetric
flow. In situations where the topographic gradient is con-
stant within a large area (figs. 7 - 12, 19 - 24), the en-
tire flow pattern is shifted towards the periphery as com-
pared with the conditions that prevail in the plane-paral-

lel case.

The introduction of a water surface at a given head means
that the boundary beneath the water surface has a constant
potential, In consequence, all flow through the bottom of

a lake is orthogonal to the bottom. Since the flow is pro-
portional to the potential gradient, and this is determined
by the topography of the land, the flow diminshes as one
moves away from the shore and out into the lake. This effect
also occurs for flat areas on the land and can be described
in such a way that the flow pattern caused by a change in
head is approximately local. Moreover, the flow is propor-
tional to the change in head. A study of all patterns indi-
cates that the flow is strongest close to a change in head

and weakest at the center of lakes and flat areas.

The hydraulic conductivity ( which is the relationship be~
tween the flow and the pressure gradient) is a function of

location in the general case. Studying the flow pattern for



an arbitrary conductivity K = K(x,y,z) is very complicated.
Here the K-value is assumed constant or diminishing exponen-
tially with depth, In addition the K-value is assumed inde-
pendent of flow direction (isotropy). One can then expect
that a decreasing K-value will provide a more surface-orien-
ted flow than a constant K-value. This effect is evident
when comparing figs. (1,2), (3,2), (4,5), (6,5), etc. More-
over figs, 7 = 12 and 19 - 24 show that a constant K-value
down to an unlimited depth provides concave equipotentials,
while a K-value which decreases with depth provides convex
equipotentials except in the vicinity of the surface. As a
consequence, the flow tends to become more horizontal at

deep depths for a decreasing K-value.

The porosity must be known in order to calculate the true
flow rates. As a rule, porosity is not known and is often
assumed to be constant. Here it has been assumed to have the
value ¢ = 0.001. This value should only be seen as an illu-
stration of the conditions in the Swedish bedrock, A rough
estimate of flow rate v can be obtained using Darcy”s law,

. With a K-value of 10~% m/s at the surface

ie. ¢v = K| v
and a potential gradient equal to 1073, we obtain v = 1076
m/s which corresponds to 30 metres per year., If the K-value
is assumled to decrease by half for each additional 100 metres
of depth, we obtain v = 0.03 metres per year at a depth of
1000 metres,

A more detailed picture of the flow rates can be obtained

from the upper diagrams in figs. 1 - 24 and from figs. 25 = 31
by dividing by ¢. As stated in the comments on question II,

the flow rates at a constant K-value are greatest in connec-
tion with extensive and abrupt changes in head and also at

the surface. The lowest flow rates are obtained at great depths,
beneath lakes and beneath flat areas. When the K-value de-—

creases with depth, this effect is further accentuated.



VI.

A constant porosity of ¢ = 0.001 has also been assumed for
calculating flow times. Since these calculations require a
great deal of time, only a few examples have been calcula-
ted. The results appear in figs. 32 - 38. It is evident that
the flow times generally increase as depth increases. How-
ever, the longest times are found at surface points of ma-
ximum potential (at the centre of the inflow area). The flow
times at depth are generally longer in the axisymmetric case
due to the fact that this flow reaches the periphery where
the potential gradients are lower than in the plane-parallel
case. A general characteristic which appears in all of figs,
32 - 38 is the enormous variation in flow time that is en-

countered for small changes in location.

The theoretical investigation presented in the Appendix in-
dicates that the flow pattern for anisotropic flow can be
obtained from the flow patterns for isotropic flow if the
anisotropy is of the following form: Kx/Kz = ¢ = constant,
The depth scale will then be multiplied by a factor Ve
while the exponent in the depth-dependance of conductivity
is multiplied by v £ ., If, for example, £ is assumed to be
2, the depth scale in figs. 1 - 24 will span an interval

of =707 <z < 0 metres and the rate of decrease in conduc—

tivity 1is given by

0.000002-100.0018z
0.000001-100.00182

The scale selected for the z=~axis causes the flow lines to
shift upwards. Increasing the K-value exponent has the same
effect, This can be interpreted in such a way that any in-
crease in conductivity in the x—~direction without a corres-

ponding increase in the z-direction provides a flatter flow

pattern.



Problems associated with storage

When radioactive waste is to be stored in bedrock, one wishes
to select a repository site in such a way that the flow time

to the surface will be as long as possible, Long flow times are
obtained primarily beneath the inflow area (descending flow li-
nes), One should then not select an area immediately beneath
the highest point in the terrain since the outflow from this
point is superficial and will reach the ground in a short time.
Primarily one should study local terrain minima in large inflow
areas. If the terrain minimum itself is an outflow area is of
no significance. The local nature of the minimum causes up-
currents only near the surface, while down—currents are ob-
tained at greater depths. If the selected repository site is

in this down-current, local outflow from the site is avoided,
Here the determining factor is how deep the local flow extends,
and this is determined by the depth-—dependancy of the hydraulic

conductivity,

Application for a particular case

To obtain additional material that will illustrate the above
question, flow lines have been calculated for several profiles
at Finnsjon. The groundwater surface is assumed to follow to-
pography as in the previous examples. The profiles (NW- and NE-)
appear in the map shown in figs.39 = 40, The following calcula-

tions have been carried out:

fig. 41 NE-profile. K = 0,000001.100.00302
No bottom
Groundwater level lowered to a depth of 600 metres

around a repository

fig. 42a) NE-profile. K = 0.000001-100.0030z
No bottom
Groundwater level not lowered.

b) Special from a)

c¢) Special from b)
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fig. 43) NW-profile, K = 0.000001-109.00302
No bottom
Groundwater level lowered to a depth of 600 metres

around a repository

fig., 44) Nw-profile. K = 0,000001-100.00302
No bottom
Groundwater level not lowered

fig. 45) NW-profile, K = 0,000001
Impervious bottom at depths of 1000, 3000 and 5000 metres
Groundwater level not lowered,

fig. 46) NE-profile. K = 0.000001-100.00302 ¢ = 0,001
Lines of equal times of flow to surface
No bottom

fig. 47) NW-profile. K = 0.000001-109.0030z 0.001
Lines of equal times of flow to surface

No bottom

<
]

The flow lines in figs. 41, 42a, 43 and 44 are selected logarith-
mically with a factor of 10-% ( if 1;, 1, and 13 are three conse-
cutive flowlines at increasing depths, 10% times as much water
runs between 1; and 1, than between 1, and 1l3). The same thing
applies to fig. 42b, but here 107% is replaced by 10-!, The flow
lines in figs. 42c and 45 are equidistant., All figures are drawn
to scale. Figs. 41, 42a and 43 - 45 were calculated for each
500th metre, fig. 42b for each 100th metre and fig. 42c for each
20th metre. The curve in the upper part of each figure represents

the terrain.

It is evident from fig., 44 that x = 12000 (just to the east of
Finnsjén, fig. 40) is a local terrain minimum in a large inflow
area. It is also evident that with the K-value selected for this
example, the local flow is so deep that the area is unsuitable
for use as a repository (closer analysis shows that the descen-

ding flow line at x = 13800 extends to a depth of at least 15000

metres).

Fig. 45 gives the flow pattern when the K-value is constant above
an impervious bottom. In the top pattern, the bottom is at a depth

of 1000 metres., All flow around x = 12000 is local, a¥so in this
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case, If, on the other hand, the bottom lies at a depth of 3000
or 5000 metres, the conditions are completely different. At

12500 and z = =1000 water from the surface at x = 11000 and

X

13500 should pass. After a long time (compared with the flow

X
times for points in the surroundings) this water reaches the
ground after first descending to a depth of at least 2500 metres.
The flow in these cases is more regional, Note that all the water
reaches the ground at x = 7600. In spite of the marked divergence
in the first part of the flow, all water flows out through a very
limited area. This effect appears in all patterns, regardless of
how the conductivity varies with depth, i.e., the outflow areas
that provide old water are small., There is one exception: the
outflow from the sea bottom provides old water except close to

the shore.

A general conclusion can be drawn from figs. 44 and 45: The ten=
dency of a flow to be local or regional is determined by the va-
riation of the K-value with depth. The exponéntially decreasing
conductivity in fig. 44 causes all flow to be local. The same
flow pattern is obtained with constant K-value and an impervious
bottom at a depth of 1000 metres.(fig. 45 at top). If, instead, the
bottom is deeper, the flow tends to be regional at greater depths
(fig. 45, centre and bottom). If the K-value decreases exponenti-
ally down to a certain depth and thereafter remains comstant,
local flow is obtained at shallow and moderate depths, while the
flow at deep depths is regional, The comnstant K-value at greater
depths can of course be so low that the regional flow is negli-
gible. Since the examples that are illustrated in figs. 41 -45
have been selected with as realistic parameters as possible, one
must conclude that nothing can be said about the regional flow

at Finnsjbn until further knowledge has been acquired about the

variation of hydraulic conductivity with depth.

The local flow that is obtained when the K-value decreases with
- depth is also evident from a comparison of figs. (41,42a) and
(43,44), An imaginary repository is located northeast of Finnsjon

at a depth of 400 to 800 metres.{see figs. 39 = 40). Figs. 42a
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and 44 depict the flow when the groundwater level follows topo-
graphy. Figs., 41 and 43 depict the flow when the groundwater
level has been lowered in connection with a storage operation.
It is evident that this very severe disturbance in groundwater
potential only affects flow within a radius of 5000 metres, 1f,
instead, the K-value is constant down to an unlimited depth, the
lowering of the groundwater level will determine the flow within

the entire area.

Finally, the flow times needed for water to flow from the ima-
ginary repository to the surface werecalculated., These are pre-
sented in figs. 46 = 47. It is evident that, for these examples
as well, the flow times for adjacent points can vary throughout

several orders of magnitude,
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Table 1.

Specific flow at left and right bottom corners

Multiply by 1072 to obtain dimensions m3/(m?s)

0 125 250 375 500 625
Example 1.

9.0 9.3 10. 12. 14, 16.
7.2 7.5 8.3 9.7 11. 13,
5.0 5.4 6.4 7.9 9.5 11,
2.6 3.2 4.7 6.4 8.1 9.8
0.0 2.0 3.9 5.8 7.7 9.3
Example 2.

13, 13. 14. 15. 16. 17.
12, 12. 12. 13. 13. 14,
10. 10. 10. 10. 11. 11.
8.4 8.4 8.5 8.6 8.7 8.7
6.8 6.8 6.9 6.9 6.9 6.8
Example 3.

1.5 1.7 2.1 2.9 4.1 5.6
1.0 1.2 1.5 2.0 2.7 3.6
.58 .69 .94 1.3 1.7 2.1
24 .33 .53 .76 1.0 1.2
0.0 .14 .28 .43 .58 .72
Example 3b.

12 .15 .25 .41 .71 1.2
059 .078 .12 .20 .33 49
.023 .033 .055 .088 .13 18
,006 .011 .02C .031 .045 .060
0.0 .002 .006 .009 .013 .018

fig. 25

2375 2500 2625 2750 2875 3000
3.1 2.1 1.1 1.4 2.1 2.3
2.6 1.9 1.5 1.4 1.5 1.5
2.3 1.8 1.4 1.2 1.0 .97
2.2 1.7 1.2 .89 .62 .50
2.1 1.6 1.2 .75 .37 0.0
5.7 4.8 3.9 4.0 4.9 5.3
5.9 4.5 4.2 4.2 4.4 4.5
4.5 4.2 4.1 4.0 4.1 4.1
4,1 3.9 3.8 3.7 3.7 3.7
3.6 3.5 3.4 3.4 3.4 3.4
48 .24 11 L34 .45 .43
.26 .13 .07 .13 .16 .15
.17 .11 .086 .076 .068 .061
.11 .083 .060 .043 .029 .021
071 .051 .036 .024 .012 0.0
072 .069 .062 .10 .11 .088
017 .006 .008 .020 .023 .017
,005 .002 .002 .004 004 .003
.002 .001 001 .001 .000 .000
.000 .000 .000 .000 .000 0.0

X=ax1Ls

grid

line

number
6

7

10

10
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fig 27
0 125 250 375 500 625 2375 2500 2625 2750 2875 3000 x~axis
grid
line
Example 8. number
24 24 24, 25 27 29. 29, 27. 25. 24, 23. 23. 6
22 22 23 23 24 26 26, 24, 23, 22. 22. 22. 7
20 20 21 21 22 23 23, 22 21 20 20 20 8
8. 18. 18. 18. 19. 20. 20, 19. 18. 18. 18. 18. 9
15. 16. 16. 16. 16. 17. 17. 16, 16. 16. 15. 15. 10
Example 9.
1.2 1.4 1.8 2.4 3.4 4.7 4,3 3.0 2.2 1.6 1.1 1.0 6
.9 1.0 1.3 1.8 2.5 3.4 3.2 2.3 1.6 1.2 .9 .7 7
5 6 9 1.2 1.7 2.3 2,2 1.6 1.1 8 5 4 8
2 3 5 7 1.1 1.4 1.4 1.0 7 4 3 2 9
0.0 1 2 4 6 8 8 .6 4 2 1 0.0 10
Example 10.
25, 26. 28. 32. 37, 44. 41 33. 28. 24. 21. '20. 6
20. 21, 24. 28. 33. 40. 38, 31. 25. 21. 18. 17. 7
14, 16. 19. 24, 30. 36. 35. 27. 21. 17. 1l4. 13. 8
7. 10. 14. 20. 26. 33. 32, 25. 18. 13. 8. 7. 9
0.0 6. 12, 18. 25. 32, 31. 23. 17. 11. 5. 0.0 10
Example 11,
49 50 51 53 56 60 59. 54 51 49 46 45 6
46. 46, 47, 49. 51. 54, 54. 50. 48. 46. 44, 44, 7
42 42 43 44 45 47 48. 45 43 42 41 41 8
37. 38. 38. 39. 40, 41, 41, 40. 38. 37. 37. 37. 9

33. 33. 33. 33, 34. 35, 35. 34. 33. 33, 32. 32. 10



0 125 250

375

500

625

2375 2500 2625 2750 2875 3000

Example 12,

2.7 3.0 3.8
1.9 2.2 2.8
1.2 1.4 1.9
.50 .70 1.1

0.0 .30 .62

Example 13.

16. 16. 16.
12. 12. 13.
8.7 8.9 9.3
4.5 4.7 5.5

0.0 1.7 3.3

Example 14,

19. 20. 20.
16. 16. 16.
13. 13. 13.

10. 10. 10.

8.0 8.0 7.8

Example 15,

3.3 3.5 3.8
2.2 2.3 2.5
1.2 1.3 1.4
.49 .54 .68

0.0 .14 .28

5.1

8.9

2.7

1.7

.98

17.

13.

9.9

6.5

4.8

20.

17.

13.

10.

7.6

4.5

2.9

1.7

.86

.42

7.2

5.4

3.7

2.3

1.4

18.

14.

10.

7.5

6.2

21.

17.

13.

9.8

7.3

5.5

3.5

2.0

1.0

.55

20.

15.

11.

8.3

7.3

21.

16.

12,

9.3

6.8

6.7

4.0

2.3

1.2

.65

.34

.15

.10

.068

.042

.86
.81
.83
.80

.78

1.6
1.5
1.4

1.3

.19

.060
.065
.049

.030

3.1

2.2

1.4

.84

.18

.59

.65

.60

.56

.91

1.3

.1

.18

.053

.052

.037

.022

2.2

1.5

.93

.52

.88

.67

.56

.43

.37

1.3

1.4

1.2

1.1

.35

.11

.054

.028

.015

2.0

1.6

1.1

.56

.24

1.4

.80

.51

.30

.18

2.1

1.6

1.4

1.2

42

.13

.050

.020

1.7

.90
40

0.0

1.5

.85

.49

.24

0.0

.39

.12

.045

.014

.008 0.0
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0 125 250 375 500 625
Example 15b.
.30 .33 .44 .63 .96 1.4
14 .16 .21 .30 .42 .57
.059 .066 .088 .12 .16 .20
.016 .020 .028 .039 .052 .064
0.0 .003 .007 .010 .014 .018
Example 16.
33. 34. 35. 36. 38. A4l.
26. 26. 27. 28. 29. 30.
17. 18. 19. 20. 21. 22,
9. 9. 11. 13. 15. 16.
0.0 3. 6. 9. 12. 14,
Example 17.
40. 41. 41, 42. 43. 44,
34. 34. 34. 34. 34. 34,
27. 27. 27. 27. 26. 25.
21, 21. 2i. 20. 19. 18.
16. 16. 15. 15. 14, 13,
Example 18.
7.5 7.8 8.7 10. 12. 14,
4.9 5.1 5.6 6.? 7.7 8.9
2.7 2.8 3.2 3.7 4.4 5.0
1.1 1.2 1.5 1.9 2.3 2.6
0.0 .31 .63 .93 1.2 1.4

2375 2500 2625 2750 2875 3000
.065 .071 .064 .10 .11 .08
.013 .006 .010 .022 .023 .017
.004 .001 .002 .004 .004 .003
.001 .001 .000 .001 .000 .00O0
.000 .000 .000 .000 .000 0.0
4. 3. 2. 3. 4 5.
2. 1. 1 2.
1. 1.
1. 1.
1. 1. 0.0
6. 3. 1. 3. 5. 6
3. 2. 1. 2. 3. 3
3. 2. 2. 2. 2. 2
2. 2. 2. 2. 2. 2
2. 2. 2. 2. 2 2.
1.4 1.5 1.4 1.8 1.9 1.7
.41 .29 .31 .51 .56 .50
.16 .36 .78 1.4 1.5 1.4
.10 .064 .055 .058 .048 .037
.068 .046 .036 .029 .017 0.0

., 4l
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2375 2500 2625 2750 2875 3000

0 125 250 375 500 625
Example 19.

26. 26. 27. 28. 31. 33.
21. 21. 22. 23. 25. 28.
15, 15. 16. 18. 20. 22.
8. 8. 10. 12. 14, 17.
0.0 3. 6. 9. 12. 15,
Example 20.
40. 40. 41. 42. 43, 44,
37 37. 37. 38. 38. 39.
32. 33. 33. 33. 33. 33
28. 28, 28, 28. 28. 28.
23. 23. 23. 23. 23. 23.
Example 21.
3.3 3.4 3.8 4.5 5.5 6.9
2.3 2.4 2.7 3.2 3.9 4.8
1.3 1.4 1. 2.0 2.5 3.0
.5 .6 .8 1.1 1.4 1.7
0.0 .1 .3 .5 .7 .9
Example 22.
52. 52. 54. 57. 62. 68.
42. 43, 45. 48. 52. 57.
30. 31. 33. 36. 40. 45.
16. 17. 20. 24. 30. 35.
0.0 6. 12, 18. 25. 3l.

15.

13.

12.

11.

11,

17.

15.

13.

11.

3.3

2.5

1.7

1.1

29.

27.

25,

23.

22,

12,

11.

15.

14.

12.

10.

2.3

1.7

1.2

23.

21,

19.

17.

17.

10.

14,

13,

11.

10.

1.6

1.2

19.

17.

14.

12.

11.

13.

12.

11.

10.

16.

14,

11.

13.

12.

11.

14.

12.

4.

0.0

13.

12.

11.

6.0

13.

11.

0.0
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2375 2500 2625 2750 2875 3000

0 125 250 375 500 625
Example 23.

82. 82, 83. 85. 87. 90.
75. 75. 76. 77. 78. 80.
66. 67. 67. 67. 68. 68.
57. 57. 57. 57. 57. 57.
48. 48. 48. 48. 47. 47.
Example 24.
6.9 7. 8. 9.4 11. 14.
4.8 5.0 5. 6.7 8.1 10.
2.9 3.0 3. 4.2 5.2 6.4
1.2 1. 1. 2.3 2.9 3.7
0.0 .36 .74 1.1 1.6 2.1

35.

32.

28,

23.

19.

4.9

3.5

2.2

1.4

31.

29.

25,

22.

18.

4.2

3.4

2.4

1.6

.95

29.

26.

24.

21.

17.

3.0

2.3

1.6

1.1

.63

27.

25.

23.

20.

17.

1.6

1.1

.68

.38

26.

24,

22.

19.

17.

1.4

.76

.40

.18

25.

24,

22.

19.

16.

.97

.63

.28

0.0
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APPENDIX 57

Analytical solutions for groundwater flow obeying Darcy’s law.

According to Darcy, groundwater flow in an isotropic medium obeys
q = K7 (1)

If the water is considered incompressible, we also have the following

law of continuity:

veg = 0 (2)

The permeability K is supposed to vary only with z, so that K=K(z)
and KZ = K'(z). Relations (1) and (2) give

o i =
R toyy ot (K /K)noZ 0 ‘ (3)

If K is constant we obtain the Laplace-equation, but this is of no
further significance.
The solutions given in the following are essentially 2-dimensional.
The first case considers flow in the x-z-plane when the geometry is
degenerate in the y~dimension, the second flow in the r-z-plane
(cylindrical coordinates) when the geometry is symmetrical around
the z-axis.
The introduction of the boundary conditions for equation (3) is
facilitated by using the streamfunction ¥. ¥ can be constructed in
the following way: We assume a function af{x,z) such that

b = avo (4)

X 4

In order that the equipotential lines and the streamlines be ortho-

gonal, we must have

VY » V@ = 0 (5)
which immediately gives

0 = 0 6)

Calculation of the second derivatives gives

i
<

, (o e
Oy O, (ax/a)wx + \wz/a/wz

(7)

1§
[ew)

L (ax/a)wx - (az/a>wz
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We see that ¢ and |y satisfy the same equation (the Laplace-equation)
only if o is a constant. If the equaticn for ¢ is given, we can deter-

mine o by identifying coefficients.
Case 1. 2-dimensional flow

/M2

et i e e et >

x=0 x=a/2 x

_’/Z\=B(\%<)_,/

The 2~dimensional flow implies @=0{x,z) and wyy=0, We assume a

solution @{x,z)=f({x)g(z) which gives

g'(z) (K'(z) g’'(z) _ _f'"x) _ 2
z(z) T K(z) g(z) fx) ¢ (8)

2 . .. .
where the constant w~ is due to the fact that a variation of x does

not affect the left side of the equation. (8) gives us the following

equations:
frix) + wzf(x) = 0 (9
g (2) + Bt g7 (2) - Wg(2) = 0 (10)

Although solutions of (10) are known for several functions K(z), we

will only consider the case K(z) = c-ezuz. (9) and (10) then give

w(x,z) = e "2 [c e +pe ™llcos wx + B sin wx] (11)

2 2.1/2

n=(w+u)/

We also obtain ax/a =0 3 az/a =24 and o = c~e2uz from which
we conclude that if w + 0

1Z U~ Z u+ Nz .
Wix,z) = cel {Eaﬂ(lenz + ;aﬂd)e %1(sin wx - B cos wx]

If ® = 0, we have (12)

Y(x,z) = 2uchx
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We can now introduce the boundary conditions. x = 0, x = a/2 and

z = B(x) are all parts of the same streamline. Assuming ${(0,z) = 0
we must have B = 0. ¢{a/2,z) = 0 then gives w = W, = 2kn/a for
all natural numbers k # 0. If k = 0 we have D = 0. We finally
obtain the general solution as a linear combination of the given

solutions for different u :

k
w(x,z) = e " 3 [c e™Z® + D e ™?] cos w x
o K k K
(13)
p(x,z) = ceM® 3 ;L'[(u_n ), ek? + (u+n, )D e "% ]sin w x
) k”k kTk k
k=1"k
2 2.1/2
ne = (o +u) /
D =0
o

Introducing the boundaryconditions at the top and the bottom gives

olx,h(x)] = a(x)
. (14)
plx,8(x)] = 0
If h(x), o(x) and B(x) are known for X=Xj, j=1,2,...,m, we can use the

fact that the sums for ¢ and { must converge to obtain an approximate

solution. Writing

N N
o [x.,h(x.)] = £ a. C, + I b. D = a(x.)
NTTj J k=g I B g JkTK ]
_ N N (15)
Uylxgs B ] = R T R T

we obtain a system of linear equations in Ck and Dk which can be solved
under certain conditions. If these conditions are favorable, and if the
convergence of the sums (13) is fast enough, the approximation will be

good.

Extra difficulties are introduced when '8(X)] is large. In this case
we use a horisontal bottom R{(x) = R. p[x,8(x)] then becomes an
ordinary fourierseries which sums to zero giving

-

‘nk

.k 2n, B p
D, = . C.e 'k k0 (16)
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Substituting (16) into (13) and taking the limit B —»-o gives

@m(XsZ) =e " 3 Ckenkz cos w, x
k=0 ’
o (17)
Uz H nk Nz .
wm(x,z) = ce ) Cke k™ sin w, X
k=1 “k

The coefficients Ck are determined in the same way as before, i.e.

by solving the equation

N
x®.,h(x. = ¥ a. C = x.) 18
Ol shG)] = IoanGe = al (18)

Case 2, Flow symmetrical around the z-axis

Introducing cylindrical coordinates, equation (3) is transformed

into

1
P T Oy PO T K(z) ¢, =0 (19)

Following the procedure of case 1, we assume a solution @(r,z) =

= £f(r)g(z) giving the two equations

Er(r) + = £7(x) + W E(r) = O (20)
g"(2) + S 87 (@) - W e(@) = 0 (21)

As in case 1 we only consider K(z) = Ccezuz, Solving (20) and (21),
we obtain

o(r,z) = e " [C e + D e "I (ur) + BN (ur)]
(22)

2 2.1/2
n = (w+p) /
where JO and NO are Bessel- and Neumann functions. We can immediately
reject Noiby setting B = 0 as NO is infinite on the z—-axis. Equations
(7) and (19) give ar/u = 1/r ; az/a =2y and g = cre2uz from

which we conclude that 1if % 0

UzZe U= Nz BN -Nz
p(r,z) = —ce [_TKQ Ce + — De Jr Iy (wr) (23)
If w = 0 we have

(r,z) = —cuDr 2
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As we want a finite potential when z tends to the negative infinity,
we put D = G when w» = 0. Assuming w{a/2,z) = 0, we obtain w = w, =
‘ k
= the k:th root Jl<wi> = (, Both Jo{wkr) and Jl(w1r) can be shown to
3 < k

be orthogonal on the interval (0,1) relative r. We obtain the gene-

ral solution as

o0

olr.z) =e "z [ce™® +De k51T (ur)
k=0 4 k ok
I (24)
- I N,z -n, z ,
Y(r,z) ce™ I = {(u=n )C ek + (uin IDe Tk Jr 3w 0)
k=1"k
2212
n = (wk o)
D =0
e}

Comparing with the results of case 1, we notice that we can obtain
(24) from (13) simply by replacing cos wx by Jo(wr) and sin wx
by ile(mr)a In determining the coefficients Ck and Dk we proceed

as in case 1.

Auisotropic flow

In this case K in (1) is a tensor. We will only consider the case

when K is diagonal and a function of z only:

In this case equation (3) becomes

Ot (c/a)@ZZ + (C'/a}wz =0

where ¢' is the derivative of c{(z). A transformation of the z-axis

according to u = z+/f gives
. 1 =
o+ (e/a)eo + (c ,a)ﬁfwu 0

£ = a/c puts this equation in the same form as (3):

]
C .
{ + + - = 0
Qxx Quu c;a u

We conclude that if we want to solve a problem with a permeability
relation a(z) = Ec(z) with 1 = up over a region x1<x<®y, z1<2<2Zy,
we solve the corresponding isotropic problem with u = uo/g over

the region x|<x<xy, z)/VE<z <z //E.
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Introduction

Future plans for the ultimate storage of waste obtained from nuclear
plants call for underground repositories in bedrock deep beneath the
éurface of the ground. Since most hardrock formations are fractured

water will flow into the repositories during the period of construc-—

tion and operation of the storage facilities.

In a study of groundwater flow under undisturbed conditions in an
unconfined aquifer, one can ovdinarily assume that the groundwater
table will follow the topography. This is based on an assumption
that the precipitation will be sufficient to replenish the aquifer
continuously, However, human intervention such as the pumping out
of water from tunnels and the like during construction can have a
considerable effect on the groundwater level, It is therefore of
interest to determine the variation with time and space of the
groundwater table and, if the intervention is to continue through-
out a long period of time, to determine the water table at steady

state flow conditions,

It is the purpose of this investigation to study the variation in
time of the groundwater table as a function of hydraulic conduc~-
tivity, porosgity and accretion to the groundwater table due to

precipitation,
Assumptions

The present investigation has been based on a proposal which calls
for a system of parallel, horizontal storage tunnels. The distance
between two adjacent tunnels is about 25 metres (centre to centre).
Each tunnel has a cross-section of 3.5 x 3.5 metres and a length

of up to 1000 metres., It is assumed that the groundwater flow in
the area around the tunnels can be considered two-dimensional

since the characteristic length of the tunnels is large., Alterna-
tively, the flow in intersecting vertical fracture zones (where the

flow can also be considered two-dimensional) can be studied.
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In the initial stage the groundwater table coincides with the surface
of the ground which is assumed to be horizontal, i.e, n(x,0)=h1 (see
Figure 2), Moreover, it is assumed that grounwater accretion attri-
butable to percolation is evenly distributed in both time and space.
If the groundwaterlevel were to rise high enough to createsurface

pools, it is assumed that they would either run off or evaporate.

Groundwater surfaceﬂl

\/

Watar in rock 000000{000000 R

Impervious

Figure 1. Crosss-section of rock being drained, showing tunnels
and region R in Figure 2.

L]

Accretion (¢ )

L A A A A A A A A A

AN
. P=1 5
A “—m-—““‘”///
Vztp(x,z,t)-o
E [o00000 T 1(x,t) R h,
h2

J’ > X

D C

Figure 2. Geometry of the flow domain, Region R is a two-dimensional
vertical cross-section,
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Mathematical formulation of the problem

The flow is assumed to obey Darcy”s law which, together with the
continuity equation for a homogeneous, isotropic, incompressible

medium and incompressible fluid flow gives the Laplace equation

V2 (x,z,t)=0 (1)
where ¢ is piezometric head (=p/y + z), p is pressure, vy is
specific weight of the fluid, t is time, x and z are co—ordinates
in a Cartesian co-ordinate system., The following boundary condi-
tions are applied to equation (1) (see Figure 2):
(1) Unsteady phreatic surface {A-B)
$ In(x,t) 3Y3In 3V e _
K Bt 5x5x "5z Tk ° (2)
where ¢ is porosity, n is elevation of the phreatic surface
above a reference plane and ¢ is net accretion to the phreatic
surface,
(i1) Streamline (B~C)
20, (3
J x
(iii) Streamline (C-D)
A (4)
3z
(iv) Streamline (A-D)
(5)

Q2 Q2
=
t
o
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(v) Constant piezometric head at the tunnel boundaries (E-F)

€+ 2 (6)

p

(D::__

Y

pg is air pressure in the tunnels,

The complete problem to be solved thus consists of (1)-(6)
inclusive, with n(x,0) given and x,z and t as independent
variables, As the system of equations is highly non-linear a

numerical technique was used to solve the problem,

The boundary condition for the bottom C-D is obtained by
considering it impervious. For D-A the boundary condition is
obtained by assuming that the flow domain is symmetrical around
D-A, which can thus be treated as a streamline. This also

applies to B~C which can be assumed to be a symmetry line to a
number of adjacent tunnel systems. Because of the symmetry in

the flow domain, only a limited part (R in Figure 1) of the

entire flow domain has to be studied reducing the required
calculations. At the upper boundary A-B, as well as in the tunnels

along E~F, atmospheric pressure prevails.

One practical step that can be taken in connection with the
calculation is to introduce the parameter €4 which is defined as

£
d K (7)
In addition the following applies

e,<1 8
I (8)
That is to say, the accretion to the groundwater surface attri-
butable to percolation {e) cannot exceed the actual value of the
hydraulic conductivity (K), It is also practical to introduce

the following transformation to dimensionless time

t=%t (9)
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The advantage of these transformations is that the number of calcu-~
lation cases can be limited and that the selection of time steps
suitable for the calculations is facilitated., The latter is a
valuable feature if the time scale varies widely for different

calculation cases.

The parameters which will determine the result of this calculation
are hydraulic conductivity (K), porosity (¢) and the groundwater

accretion {(e).

Numerical examples with comments

Several numerical examples have been carried out to illustrate the
fluctuation of the groundwater surface using the above model., The

results are presented both in graphic and tabular form.

The flow domain in the examples has the folloing dimensions (see

Figure 2):

D-C : 3000 metres
B-C : 1000 metres
D=-E : 500 metres

E~F : 20 tunnels, each with a cross-section of 3.5 x 3.5 metres
and with a distance of 25 metres between the centres of
adjacent tunnels., Atmospheric pressure (p =0) is assumed
to prevail in the tunnels, i.e, m=h2. &

Qualitatively, the results depend on the value of the accretion €4
to the phreatic surface. In all cases presented a standard value

of the porosity of ¢=0,001 was chosen,

It is of interest to note that the results obtained for each value

of €4

K and e. For example gd=0,16, aside from the time scale, is equivalent

to (e=50,K=10m8), (e=5,K=10_9), (e=O,5,K=1Om10) etc, Consequently,

can be applied to several different paired combinations of

the examples have been built up primarily around a number of

different values of ¢, while keeping all the other conditions constant,

d
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The actual values of €4 and the corresponding values of ¢ and K

are presented in Table 1,

€4

0 0.08 0.16 0.32 0.48

10 0 2500 5000 10000 15000
-7
10 0 250 500 1000 1500
K -8
(mysy 10 0 25 50 100 150
9
10 0 2.5 5 10 15
~10
10 0 0.25 0.5 1 1.5

Table 1. Vertical accretion to the groundwater table (e=edK (mm/year))
relative to the K wvalue and €4

The drop of the groﬁndwater table naturally takes place most rapidly
in the area just above the tunnels, Table 2 presents the drawdown

of the groundwater table at the centre line (i.e. A-E in Figure 2)
as a function of time (td). Table 3 presents times (t) for the

drop of the groundwater table down to the tunnel system as a function

of K and e,

The lateral extent of the drawdown of the groundwater table depends

upon the value of €4° This is illustrated by the graphical displays

that accompany the examples.

In example 1 (sd=0), the extent of the drawdown is infinite provided
the horizontal extent of the flow area is assumed to be infinte. At
t ,=1000 the drawdown in the example is about 50 metres at B-C in

d
Figure 2 (td=1000, $=0,001 corresponds to K values (m/s) of

10_6, 10_7, 10_8, 10-9‘and 10_10 to the following values of t (years):
0.03, 0.3, 3, 30 and 300 respectively,



Example

1 2 3 4 5
ed=0 €d=0,08 €d=0.16 Ed=0°32 €d=0.48
t
0 0 0 0 0
100 -96 ~-87 ~79 -63 ~47
200 ~192 ~-176 -160 -127 ~-95
300 -289 =265 =240 ~191 -142
400 -385 =353 ~321 -256 ~-191
500 =477 =440 ~401 =321 -239
550 =500
600 =500 -476 -385 -287
650 -500
700 =447 =336
800 =500 -384
900 =429
1000 =472
1100 -500

Table 2, Drawdown (m) above the tunnels (A-E in Figure 2) as
a function of time td'



Example

1 2 3 4 5
ed=0 td=550 sd=0.08 td=600 ed=0.16 td=650 ed=0.32 td=800 ed=0.48 td=1100
£ t € t € t € t € t
1()—6 0 0.017 2500 0.019 5000 0.02 10000 0.025 15000 0.035
10_7 0 0.17 250 0.19 500 0.2 1000 0.25 1500 0.35
10‘8 0 1.7 25 1.9 50 2 100 2.5 150 3.5
1Om9 0 17 2.5 19 5 20 10 25 15 35
10—10 0 170 0.25 190 0.5 200 1 250 1.5 350

Table 3. Times t (years) for the groundwater table to drop to the tunnelsystem
for different values of ¢ (mm/year) and K (m/s).

0L



In the other examples, the extent
water accretion in these cases is

up to the ground surface beyond a

71

of the drawdown is limited., Ground-
thus sufficient to fill the aguifer

certain distance from the tunnel

system, Figure 3 shows the extent

of the drawdown as a function of €4

L
N
{
{
|
3000 ~ 1
2000 -
1000 -
0 ¢ v T t 1 ; v r . ™ >€d
0 0.5 1.0

Figure 3. Lateral extent (L) of the drawdown of the groundwater

table as a function of €4

The examples are presented graphically in Figure 4-9, These diagrams

show the gradual drawdown of the groundwater surface at equal time

intervals (Atd). Moreover the piezometric head () is illustrated

by means of isolines having the following values: -50, -~100, =200,

~250,

-300, =350, =400 and -450 metres {(however the isolines in

Figure 7b are limited to =100, ~200, -300 and ~400 metres),
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Three dimensional model of groundwater flow governed

by topography.

The questions discussed in section I were essentially two
dimensional in character (see page I1.2). A two dimensional
model was natural in this investigation. The questions were
also easy to approach with an analytic method. On the other
hand new questions have arizen, partly due to the cbtained

results, which demand a more powerful model:

a) In a two dimensional model the plane-parallel geometry
will give flowtimes to the surface which generally are too
short. The local topography will have too large an effect on
the groundwater flow. On the other hand the axisymmetrical
model will give the opposite effect. Time intervals for flow
times obtained in this way are eften so large that they are
of limited value., Athree-dimensional model would give better

possibilities to determine the flowtimes,

b) The analytical approach given in section I limits the
choice of K-values to a variation with depth., This method

also restricts the model to continuously varying K-values.

It is not possible to study the effects of fracture zones

on groundwater flow with this approach, With a numerical model
it is at least in principle possible to introduce K-values
varying in on arbitrary way in space, In the field several
fracture zones are often found to intersect under acute
angles, In these cases the geometry of the fracture zones

can be suspected to determine the groundwater flow to a

high degree. All these problems demand a three dimensional

model,

¢) When giving a description of groundwater flow it is
essential to know the K-variation in space. To obtain
K-values is very expensive, It is also difficult to judge
how large regions that can be represented by single
measurements, It is desirable to use all available informa=-

tion as for instance age determinations of groundwater,
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actual groundwater level instead of topography, etc., and
determine the K-value from this information. This approach

requires a fully developed three-dimensional model.

The model described in this section is a three-dimensional
finite element model, The solution satisfies Darcy’'s law,

where K is a diagonal tensor in the coordinate system chosen:
q=Kvo

The solution is also governed by the equation of continuity
Veq = 0

whence

Ve(KVp) =0

One of the boundaries is the groundwater table which coincides
with topography. The heights are chosen to give a representative
topography as the boundary conditions are only given at descrete

points, see fig. 2a.

The modelled region is also bounded by vertical streamlines,

i.e. no flow boundaries, The bottom is also bounded in the

same way.,

The model has been tested in the Finnsjdn-region, see fig 1.

and fig I. - 39 - 40, The geografic area is 30 km2. The depth
from the surface to the bottom is about 1500 metres, The three-
dimensional region is divided into 5715 tetrahedric elements
distributed in 5 horizontal layers. Each layer is 300 metres
thick. The total number of nodes is 1230, After consulting the
Swedish Geological Survey vertical fracture zones have been
chosen according to fig.l, Due to numerical considerations the
fracture zones were given a width of 50 metres. From a geological

point of view this width is to large. This is compensated by



giving fracture zone-K-values which are 100 times larger
than rock-K-values instead of 10000 times:

K, = 100.00302—4m3/m25 in the fracture zones

1

K2 = 100'00302_bm3/més in the rock

where z is depth (negative downwards)., This choice of K in
the fracture zones means that same amount of water will flow
through these as if they were 0.5 metres wide with a K-value

10000 times larger than that of the surrounding rock,

The true flow velocity in an arbitrary point is determined
by — —;Ev(p when the potential ¢ has been computed for all
nodes in the region. Here ¢ is the effective porosity and
has been chosen as ¢ = 0.001. In this way the results are
comparable to those obtained in section I. Finally the flow-
times from arbitrary points to the surface are obtained by

numerical integration along the pathlines.

The intersections between the equipotential surfaces and the
level surfaces 0, -500, -1000 and -1500 metres are presented
vin figs, 2a-d. It is seen in these figures that the region is
divided into two parts by a line from SSE to NNW. To the west
of this line water is flowing towards the fracture zone in
Finnsj6n, while water further to the east flows towards the

3
marshes in the east half of the region.,

The water flow from the 500-metre level has been studied to
obtain a more detailed description of the flow pattern.
Pathlines intersecting the 500 metre level at gridpoints 200
metres apart (in a regular mesh over the whole region) inter-

sect the surface at the crosses shown in fig. 3, Pathlines
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starting or ending at the vertical boundaries have been excluded.

The main direction of flow has been suggested by drawing straight

lines between the starting point at = 500 metres and the surface

discharge point for a few selected pathlines. The dashed lines

show the boundaries of the discharge areas at the surface.



82

The times of flow along these pathlines have been computed.
These times are presented in figure 4a where the digits denote
years in exponents of ten (e.g. the curve marked with a digit 3
denotes a flowtime cf 1000 vears for water at points on this
curve at the -500 metre level to reach the surface). Times for
water at the groundsurface to reach the =500 metre level have
also been computed. The results of this calculation are pre-
sented in figure 4b. The contour map in figure 4b shows that
some particular areas with high ages can be distinguished.

Two such areas are located to the left in figure 4b., A third
area with high ages can be found near the boundary to the right
in the figure. A comparison between figure 3 and 4b shows that
areas with high ages are mainly represented as outflow areas and

vice versa.

As mentioned earlier, the flowtimes from the 500-metre level to
the surface were calculated for mesh points 200 metres apart.
This distance is too large to give any details around the frac-
ture zones. The groundwater level in the fracture zones was al-
so chosen the same as in the immediate vicinity. This condition
is not very realistic as the high K-value in the fracture zones
relative the K-value in the rock tends to decrease the ground-

water level.

In order to study the effects of a decreased water level in the
fracture zones on the flowtimes, a number of synthetic examples
were modelled. The dimensions of these models were 4242 * 6000

* 700 metres., The solutions were obtained by the method of fi-
nite elements (924 nodes and 3330 elements distributed in two
layers). All the models were given a topography consisting of

a linear slope: At the bottom of the figures the ground is at the
10 ~metre level, while it is at the zero metre level at the top.
Outside the fracture zones the groundwater level is assumed to
follow the topography. The fracture zones were given a width of

200 metres (the left fracture zone in the figures has a width of
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100 metre due to symmetry)., The water level in the fracture zones
also varies linearly: At the bottom of the figures the water level
is one metre below the ground, while i+ coincides with the ground
level at the top of the figures. The K-values were chosen in the

same way as in the FinnsjOn-model:

100.0030z-% 3/m2¢ in the fracture zones

51
K,

The results are summarized in the three models shown in figu-

100.00302-6 13 /24 in the surounding rock

res 6 - 8,

Figure 6 shows the effect of a single fracture zone parallel to
the topographic gradient, The flowtimes are seen to be almost un-—
affected by the presence of a fracture zone already at a distance
equal to the width of the fracture zone. In fact at this distance,
the flowtimes are slightly longer than with no fracture zone. This
is due to the focusing effect of the fracture zone: The water is
near enough to be drawn towards the zone but yet so far away that
it reaches the ground level before reaching the fracture zone,

In this way the flow path will be longer than without a fracture-

zone which, in this case, gives longer flowtimes,

Figure 7 shows the model with a fracture zone parallel to the
topographic gradient and also one at right angles to this gra-
dient, First of all the same general effects as discussed for
fig. 6 can be seen. Also, the introduction of a fracture zone

at right angles to the gradient tends to widen the zone with
short flowtimes. Otherwise, this fracture zone seems to have

a very small effect on the flowtimes. This is due to nearly all
water flowing across the fracture zone and in to the rock on the

other side.

Figure 8 again shows a model with a fracture zone parallel to
the topographic gradient. There is also a fracture zone at an
acute angle to the gradient. The flowtimes are completely un-
affected by the acute fracture zone in the region with lower to-
pography, while the flowtimes in the region with high topography
are decreased due to the fact that water in this region does not

reach the low topography region.
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As an overall result, the following statements are concluded:
a) A fracture zone parallel to the topographic gradient does
not affect the flowtimes in the surrounding rock.

b) A fracture zone not parallel to the topographic gradient
shortens the flowtimes in regions where the ground level is
higher than at the fracture zone. In regions where the ground

is lower, the flowtimes are unaffected.
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Figure 1.

Map of the Finnsjdn area,
The map also shows the element mesh used in
the numerical model. The shaded area illustrates

major fracture zones.
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Figure 2a. Horizontal cross-section showing the piezometric
head distribution at the zero metre level. The
dashed line A-B-C-D-E-F shows the vertical profile

-

shown in figure 5.
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Figure 2b, Horizontal cross-—section showing the piezometric
head distribution at the ~ 500 metre level.
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Figure 2c. Horizontal cross=—section showing the piezometric
head distribution at the - 1000 metre level,
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Figure 2d. Horizontal cross-section showing the piezometric
head distribution at the =~ 1500 metre level,
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Figure 3. Spots with outflow of water from the - 500 metre level.
Some of the outflow points are connected with their
starting points at the - 500 metre level illustrating
the main flow direction,

Dashed lines denote boundaries between inflow and
outflow areas at the groundsurface.,



Figure 4a,

Times for water at the =500 metre level to reach the
groundsurface, Digits in the figure denote years in
exponents of ten., E.g. the curve with a digit 3
implies a flow time of 1000 years for water at this
line to reach the groundsurface from the - 500 metre
level,
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4.5

. Figure 4b. Calculated age of groundwater at the =500 metre level,

Digits in the figure denote years in exponenents of ten.
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Figure 6. Flowtimes for a synthetic example with a single fracture
zone parallel to the topographic gradient.
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Figure 7, Flowtimes for a synthetic example with two fracture
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are dashed).
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