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Summary 

The diffusivities of HS and H2 have been determined fro111 
profile analysis and steady state transport experiments. 

- -12 -12 The diffusivity of HS was found to be 9·10 and 4 ·10 
m2•sec-l in MX-80 and Erbsloh bentonite respectively. The re­
sults are in fair agreement with the results earlier obtained 

l ( l 2; 

for Cl and I . The H2 diffusivity calculated from steady state 
transport was found to be surprisingly low (3.6·lo- 12m2•sec- 1). 

Various heavy anions with molecular weights 290-30·103 were found 
to migrate through MX-80 bentonite with diffusivities in the 
range (2,l-0,75)•10- 15 m2.sec- 1. 

; 
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Introduction 

The KBS concept concerning the storage of nuclear fuel wastes 
implies that canisters be deposited in drilled holes and iso­
lated from the rock by a clay barrier consisting of highly com­
pacted bentonite. The bentonite is not fully saturated at its 
deposition and therefore will take upp additional water from the 
rock. By swelling of the clay a perfect contact between the 
clay and rock might be created. 

As the clay is assumed to create a first barrier for the tran-
sport of radionuclides from leaching canisters several diffusion 
studies have been carried out (l-6). From the corrosion point of view 
a knowledge of the diffusive transport of sulphide through the bentonite 
to the surfaces of the canisters as well as the outwards tran-
sport of hydrogen formed radiolytically near the canisters is 
important. A study of the diffusion of these species 
have therefore been carried out. The effect of ionic size on 
diffusive transport through the the clay has been the subject of a 
number of discussions and we have therefore in this study included 
a few anions with varying molecular weights. 

EguifJ:lent and clay preparation 

The experiments were carried out in swelling oedometers construc­
ted at the University of Lule! (figure 1). Bentonite was compacted 
under nitrogen atmosphere (N2} to desired density and thereafter 
contacted with water for 2-3 weeks. The experiments were carried 
out at 2s0c in thermostated boxes. 

Materials 

Two COllTllercially available bentonites were used: the American 
Colloid Co type MX-80 granulated Na-bentonite and the Bavarian 
Erbsloh Ca-bentonite. The water saturation was made with N2-
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purged KBS-reference synthetic ground water 11 ,l,llards" ~nlution 

(KBS TR-report 98). The radionuclide 35s was obtained as solid 
sodium sulphide (2-25 mCi/mmol) sealed under N2. Stock solu-
tion was prepared by dissolving the sodium sulphide in N2 purged 
Allard water. The pKa values for H2S and HS- are 6.88 and 14.15 

respectively (7) and the pH of the Allard solution is 8.8-8.9. 
Thus > gm; of the tracer is present as H35s-. The hydrogen (H 2) 

used was of Aga SR-quality. Sodium anthraquinone-2-sulfonate 
(AQS-, Fluka, pa), Disodium- 2,4,5,7 Tetrabromofluorescein (Eosin 
p.a. Merck) and Sodium-Lignosulfonate L5,6, Ll2 and L30 with anionic 

molecular weights354, 646, 5600, 12000 and 30000 were used as re­
ceiverl. 

Experimental methods 

HS 

Two different techniques were used 

I) H35s- solution (20 ~Ci/ml) was equilibrated with a 8 mm thick 
bentonite disc in cell A (figure 1) for 3 weeks. The cells A 
and B were opened and thereafter mounted as shown in figure 1. 

By this procedure an extended source of limited extent was ob­
tained. The oedometers were opened 17 days after onset of dif­
fusion. Layers of known thickness were sliced off the bentonite 
cylinders and the radiation intensity of each of the serially 
surfaces measured using a GM detector with a thin end window 
(figure 2). 

II)The diffusivities were also determined by adding a small volume 

of the tracer stock solution to solution on one side of the oedo­
meter (21 µCi/ml) and measuring the steady state transport of 
H35s- through a 8 ITl11 thick bentonite disc. The 35s concentra­
tion on both sides of the oedometer was measured by liquid 
scintillation counting. 



The diffusivit~1 of H2 was detern:ined by measuring the trcr-
sport through a 8 rrr: thick bentonite disc. The amount H2 trar,s::,ortcc 
through the bentonite was measured gaschromatographicclly usn,:: 

a molecular sieve 13x column connected to a AGA-Argogra· 
(figure 3). 

Anion diffusion 

The salts used were dissolved in the Allard solution on one side 
of the oedometer and the 'transport through 5 l11Tl thick bentonite 
discs detennined by spectrophotometric analysis of the solutior:s 
on both sides of the bentonite discs. 

Evaluation of diffusion coefficients ------------------------------------
I) Profile analysis: the diffusion coefficients were calculated 

by fitting the experimental data to the following equation (8). 

C(x,t) = C0 erf ---- + erf ___ _ ( 
l-x/h l+x/h ) 

2/h· \Tu 2/h· VOt 
( 1 ) 

where C(x,t) = tracer concentration (radiation intensity) at 
distance x from surface 

C = initial tracer concentration in radionuclide con­o 
taining volume 

h = thickness of bentonite cylinder initially containing 
the radionuclide 

t = time after onset of diffusion 

D = diffusivity 



11) The diffusion coefficient was calculated using the equation 

( 2) 

where A is the area of the bentonite in contact with 
the solutions 

c1-c2 concentration difference across the bentonite 
cylinder of thickness x 

volume of the low concentration solution. 

It ought to be emphasized that the calculation is based on 
geOflletrical area and tracer concentration in solutio~. 

Results 

The distributions of 35s within MX-80 and Erbsloh bentonites l.5·106 

sec efter onset of diffusion are depicted in figures 4-5. The theo­
retical distributions according to equation (1) above are given by 

the dotted lines. In carrying out the calculations the measured radi­
ation intensity of each of the serially exposed surfaces was assumed 
to represent the actual tracer concentration at the surface. This is 
not quite true, since the observed intensities contain contributions 
from layers beneath the surface. Several methods of calculating the 
true surface activity have been suggested (9) but we have not 
found it necessary to carry out any corrections for the following 
reasons. The 8--energy of 35s is 0.167 MeV which corresponds to 
a half-intensity distance of 3 mg·cm-2 i.e. 0.014 mm in the com­
pacted clay. The counting efficiency falls off very sharply with 
the distance from the exposed surface as shown in figure 6. The 
change in 35s concentration within O.l rrrn is only a few per cent, 
cf figures 4-5, and the relative contribution from inner layers 
to the measured radiation intensity of each of the serially ex­
posed surfaces is thereby nearly constant. 
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The calculated diffusion coefficients are tabulated in ta~le l 
together with the diffusion coefficients of HS- and H2 o~ained in 
the steady state diffusion experiments (figures 7-8). For conr,arison 
diffusion coefficients for I and Cl obtained in an earlier 
study are included. In calculating the diffusion coefficient for 
H2 the solubility of H2 was taken to be 19.l cm3·dm-3 (10). 
In measuring the optical absorption of the solution on the low 
concentration side of the bentonite disc a steady increase in 
absorption was observed over the whole wave length region 250-600 
nm. Absorption spectra of the LS-30 solutions 45 days after onset 
of diffusion are shown in figure 9. The absorbance of AQS- and 
LS-30 on the low concentration of the bentonite are plotted in 
vs time in figure 10. The diffusivities calculated from these 
plots are given in table 2 together with the lower limits estima­
ted from short time experiment. 

Discussion 

The diffusivities for HS calculated from profile analysis are 
nearly the same as earlier obtained for Cl- ions. The diffusivity 
is about a factor two lower in Erbsloh as compared to MX-80. The 
diffusivity of HS in MX-80 obtained from steady state diffusion 
is, however, one order of magnitude lower than the Cl- diffusivity 
obtained in similar experiments. On equilibrating the MX-80 and 
Erbsloh bentonites with H35s- solution we observed that the radi­
ation intensity of the MX-80 surface after equilibration was only 

tN 20% of the radiation intensity of the Erbsloh surface. The sul­
phur content of the two bentonites studied have been found to be (11) 

MX-80 
Erbs loh 

(0.23% total, O. ll-O. l37;as sulfides) 
- 0.01%. 

One difficulty in correlating the diffusivities obtained from pro­
file analysis to the diffusivities calculated from steady state tran-
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sport data is the lack of knowledge of the tracer concentration 
at the solution-bentonite interface. This concentration is gene­
rally higher for sorbing species like positive ions (counterions 
to the bentonite) and lower for negative ions (coions to the ben­
tonite) as shown schematically in figure 11. The equilibrium 
concentration of any ion in the bentonite and solution respectively 
is a function of the ionic charge, the ionic strength of the solu­
tion and the overall exchanger composition and thereby not readily 
calculated. The difference in H35s- concentration in the two 
bentonites probably at least partly reflects the difference in 
sulfide content of the two bentonites. 

C 
0 
~ 

+' 
10 
L 

+> 
C 
GJ 
u 
C 
0 u 

Solution 

Cso1ution 

ccoions 

Solution 

k. 
Fig. 11 

The H2 diffusivity measured in this study is about a factor five 
lower than the diffusivity obtained by Neretnieks (2) in a similar 
experiment. This difference may possibly be due to experimental 
differences in filterstones and bentonite densities. In both studies 
the H2 diffusivity obtained is surprisingly low and may indicate 
some adsorption of H2 on the bentonite. 
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Table l. 

Diffusivities at 25°c for HS-, Cl-, I and H2 calculated 

from concentration profile analysis (a) and steady state 

transport ( b). 

Bentonite 

MX-80 

Erbsloh 

Table 2. 

Density 

ton •m - 3 

2. l 

2. 1 

D xl013 
obs 
2 -1 m •sec 

Cl I 

60 40 

3. 1 2. 1 

10 

1.3 

Method 

HS 

90 (a) 
0.18 36 ( b) 

40 (a) 
( b) 

Diffusivities in MX-80 (= 2.1 ton·m-3) of various anions, 

calculated from steady state transport. 

Anions Molwt D ·1015 
obs 
2 m · sec -1 

AQS 290 > 2 a) 2.10 b) 

Eosin 548 > 0.6 

LS 5,6 5.6·103 > 1.0 

LS 12 12· 103 > 0.5 

LS 30 30• 103 > 0. l 0.75 

a) estimated from short time experiment. 

b) calculated from data plotted in fig. 10. 
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Tne diffusivities of AQS and LS-30 are surprisingly high. The 
molecular structure of AQS is planar and the size about 
5 x 8 A. 

Th~ structure and size of LS-30 are not known, but a rough 
estimate can be given based on the fol lowing assumptions. 
Lignin is a natural polymeric product arising from dehydrogena­
tive polymerization of the p-coumaryl (I), coniferyl (II) and 
sinapyl (III)alcohols.Since the polymerization is a radical process 
involvinj a number of resonant radical fonns (Ra-Rd) 

CH20H CH20H CH20H I I I 
HC HC HC 

I • • CH CH CH 
• 

QOCH3 H3CO◊OCH3 0 
OH OH OH 

II) ']I) cm, 

CHi()H CH20H CH20H CH20H 
I I I I 

HC HC• HC HC 
II 

-(H•+e) 
It I II • HC HC HC HC HC 

Q.OCH3 Q.OCH3 ◊OCH3 H◊OCH3 OOCH3 
OH 0 0 0 0 

• 
(]I) (Ra) (Rb) (Re> (Rd) 
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LS-30 most probably has a spherical structure. From the alcoholic 
structures and ~olweightsthe LS-30 ion may be considered to 
consist of 150-180 units with diameter ~ 8 A. Assumin9 spherical 
structure the diameter of the LS-30 ion is estimated to be about 
(40-45) A. A comparison of the diffusivities of the anions sturlied 
gives no indication of "pore filtering" effect on the diffusivity. 
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figure 1. 

The LuH swe1ling pressure oedometer. The canpacted samples A 

and B were confined between filterstones throuoh which water 

was passed during the saturation period. The radionuclides were 

added according to the methods described above. 



figure 2. 
Experimental equipment for measurement of the radiation 

intensity of the serially exposed bentonite surfaces. 
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Figure 6. 

Relative detection efficiency at surface of bentonite with 

density 2.1 ton·m- 3 as function of 35s-source distance fro~ 

surface, assuming constant detecting geometry. 
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a) Absorption spectrum of LS·30 reference solution (2•10·3 an3 

diluted to 1 cm3) 
b) Absorption spectrum of solution on low concentration side of 

bentonite (A= 19.63 an2, x = 0.5 cm, t = 45 days, 1 cm optical 
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vs time after onset of diffusion. 
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