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SUMMARY 

Radionuclide migration have been studied in natural fissures 

oriented para11el1 to the axis of granite drill cores. A 

short pulse of the radionuclides solution was injected at 

one end of the fissure and the temporal change in radio

nuclide concentration of the eluate measured. After several 

hundred fissure volumes water had been pumped through the 

fissure following the radionuclide pulse the activity distri

bution on the fissure surfaces was measured. From the retarda

tion of 152Eu, 235Np and 237 Pu it is concluded that these radio

nuclides are transported in the oxidation states Eu(III),Pu(IV) 

and Np(V). 

The distribution coefficients Kd calculated from flow and 

activity distribution data on the basis of geometric surface 

area/volume ratios are of the same order as published Kd 

values obtained from batch equilibrium experiments. 
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INTRODUCTION 

The transport of radionuclides with groundwater in geologic 
media is largely detennined by processes such as sorption, 
ion exchanget precipitation, complexation and hydrolysis. 

For radionuclides such as actinides with more than one possible 
stable oxidation state the chemical conditions, e g redox potential, 
pH and concentration of complexing anions are of great import
ance. For the understanding and possible prediction of radio
nuclide migration in fissured crystalline rock,data from ex
periments carried out under well defined conditions are re-
quired. 

Our laboratory studies are focused on the transport of radio
nuclides in single natural fissures and the migration of the 
moderately sorbed Cs+ and Sr2+ ions are discussed in a previous 
report (1). The present report deals with the transport of Eu 
and the actinides Np and Pu. 

EXPERIMENTAL 

Flow systems: The rocks used in this study are granitic drill
cores taken from Stripa mine at a depth of 360 m below ground. 
Each core used has a natural fissure running parallell to the 
axis. The cylindrical surfaces of the drillcores were sealed 
with a coat of urethane laquer to prevent any water to leave 
the rock except through the outlet end of the fissure. The 
granitic cylinders were thereafter mounted between plexiglas 
end-plates containing shallow in- and outlet channels slightly 
wider than the fissures (figure l). Artificial groundwater was 
pumped for 2-3 days through the fissure to be used to preequi
librate the fissure surface. To characterize the waterflow arti
ficial ground water containing a non-sorbing tracer was fed to 
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the inlet channel by a peristaltic pump (Istmatec IP-4) 
ensuring a steady flow through the fissure. Flushing water 

was simultaneously fed by the same pump through the outlet 
channel to reduce the time delay due to the channel volume. 

The effluent was continuously fed to a fraction collector 

for analysis of the tracer concentrations. The tracer was 

added as a pulse of suitable duration. The radionuclides studied 

were fed into the fissure by the same technique. After several 

hundred fissure volumes of water had been pumped through the fis

sure the rock cylinder was opened and the tracer distribution 

on the fissure surface was measured. 

Solutions: All solutions were prepared using artificial ground 

water synthesized to represent the natural water in contact 
with the granite rock. The water composition is given in table 1 

below. In all experiments the water used was deoxygenated by 

N2 purging and the actinide experiments were carried out in a 

glove box with N2 atmosphere. To characterize the water flow 

a lignosulphonate ion (mol wt~ 24 000) was used. This ion can 

be conveniently analyzed and do not sorb on the fissure surface. 

Tracer solutions of 152Eu (Amersham), 235Np and 237Pu (Harwell) 
were prepared by diluting aliquots of acid (O.l-1 M HCl) stock 
solutions. The tracer concentrations used were 152Eu (5·10-B -
- 2·10-? mol·dm-3). 235Np (1-10-g mol·dm-3); 237Pu(l.4·10-lO 

mol•dm-3). The decay characteristics of the nuclides and measured 

radiation are given in table 2 below. 

Tracer concentration measurements: The lignosulphonate ion dis

plays a strong optical adsorption band with maximum at 280 nm 

(£ ~ 3·105) and the LS- concentration was therefore measured 

spectrophotometric at this wavelength. The 152Eu, 235Np and 
237Pu concentrations were determined from measurements of the 

activity using a (2 11 x 2") NaI well type detector. 

The tracer activity on the fissure surfaces was measured with 

a (2 11 x 211 )NaI planar detector fitted with a 0.6 cm2 lead coli-
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mator (figure 2). The detectors were connected to a compute
rized 256 channel pulse height analyzer. 

Distribution coefficient measurements: Crushed granite was 
washed with ground water solution. The suspension was thereafter 
filtered through a 0.45 µm pore size Millipore filter and the 
solid material dried at 105°c. Known amounts of the dried crushed 
granite were suspended in 152Eu solutions for 24 h. The suspen
sions were filtered through 0.45 µm pore size filters and the 
amount of 152Eu in the granite and filtered solutions detennined 
by y-counting. The 152Eu distribution coefficient was calculated 
using the equation 

where V = volume of 152Eu solution 
w = weight of crushed granite 

Rs = net count rate of granite 

RL = net count rate of filtered solution. 

EXPERIMENTAL RESULTS 

To characterize the water flow non-interacting tracers are re
quired. A number of assumed water true tracers nonnally used 
for this purpose were tested. Break through curves for some of 

the tracers tested and the concentration ratios Cout/Cin at 
t = 1o·t0_5 are depicted in figures 3, 4. The experiments gave 
with one exception near identical break through curves for all 
the tracers tested. As seen from figure 4 the 131 r concentration 
only reached the expected full value after a long delay. We 
have not investigated the reason for this effect any further 
but used NaLS in the present study. 

152Eu: In some earlier experiments it was found that a few per 
cent of the 152Eu activity was transported through the fissure 
with the same velocity as water. The same phenomenon was ob
served in experiments with 2 cn3 5 cm long columns filled with 
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crushed granite and 200-400 mesh H+ saturated Ag-50 ion ex
changer resin. On filtering the 152Eu solution through a 0.21 i.im 
filter the amount transported momentarily through the fissures 
could be very much reduced. To study the effect of the fraction 
of 152Eu carried by particulates on the sorption on fissure 
surface experiments with and without 0.2 i.im filter were carried 
out. Figures 5, 6 show eluate data for two experiments carried 
out with and without a 0.21 um filter between the tracer solution re
servoir and the inlet channel. The experiments were run simultaneous
ly and the tracer solution fed from the same reservoir. The152Eu 
distribution on the fissure surfaces of the drill cores used in 
these experiments are depicted in figures 7, 8. Before opening 
the drill core '\, 400 fissure volumes of ground water had been 
pumped through the fissure following a 15 minutes long pulse 
of tracer solution. The detection limit is'\,5cpm. In the batch 
adsorption experiments with 25, 50 and 100 mg crushed granite 
suspended in 25 ml solution the distribution coefficient was 
found to be (1.4 ± 0.2)·103 an3/g. 

235Np: Data from corresponding experiments with 235Np are shown 
in figures 9, 10. As seen the 235Np activity is only retarded 
a factor 3-4. No 235Np was found on the fissure surfaces on 
opening the drill core. 

237 Pu: No237 Pu was detected in the eluate. The distribution of 
237Pu on the fissure surface after 2 400 fissure volumes of 
ground water had been pumped through the drill core following 
the pulse of tracer solution is depicted in figure 11. 40~ of the 
237Pu was found on the surface of the inlet channel and 60t on 
the fissure surface within 2 ITIT1 distance from the inlet channel. 
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DISCUSSION 

When a radionuclide transported by water through a fissure 

reacts with the surface of the fissure the radionuclide will 

be retarded relative to the water. In the simplest case of a 

fast reversible reaction and linear equilibrium the retardation 

factor R is given by the equation 

u 
R = rf- = 1 + a·Ka 

rn 

where Urn' Uw is the velocity of radionuclide and water 

'respectively, 

a= af/Vf is the ratio of fissure surface area and 

volume, and 

Ka 0113;0112 is the surface distribution coefficient. 

The radionuclide retardation R was calculated using the 

equation 

R = (Vw/Vf)·l/i 

where V is the total volume water pumped through the fissure. 
w -

l is the fissure length and l the mean distance travelled by 

the radionuclide (from radionuclide distribution on fissure 

walls). 

The Ka values calculated from the flow experiments are based 

on the geometrical fissure area, i e the surface roughness is 

not taken into account. Most of the published distribution co

efficients (Kd} have been detennined in batch experiments with 

crushed granite, and thereby calculated on weight and not sur

face area basis. The ratio of the distribution coefficients is 

given by the equation 

Ka = Kd•p/a 

where p is the density (g/cm3) and a the surface/volume ratio 

of the granite. 

Thus to compare the Ka values obtained from flow experiments 

with Kd values from batch equilibrium experiments knowledge of 

the exposed surface areas of the fissures and crushed granite 

are required. 
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A very approximate comparison can, however, be made if it is 

assumed that the exposed surface/geometric surface ratio is 

equal. The crushed granite is assumed to consist of spherical 

beads and the surface area/volume ratio is thus 6/d, where d 

is the bead diameter. The transport parameters and Kd-values 

calculated on basis of these assumptions are given in tables 

3 and 4 respectively. For comparison Kd values for the radio

nuclides 235Np and 237 Pu obtained by Allard (4) are given in 

table 4. The Kd-values calculated from the flow experiments are 

somewhat higher than the Kd values obtained in batch experiments, 

but in view of the uncertainties involved the agreement is satis

factory. From the Kd-values obtained it can be concluded that 

the radionuclides studied were transported in the following 

oxidation states (5), Eu(III), Pu(IV), Np(V). 

In our experiments a few per cent of the 152Eu and 235Np was 

carried with the water flow on particulates with d > 0.21 µm. 

This effect may partly be due to precipitation and partly to 

adsorption on particulates fonned in the synthetic ground water. 
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Table 1: Composition of the artificial ground water used 

in experiments (ref 2). 

Substance 

HC03 

H4Si04 

so 2-
4 

Concentration 

mol ·dnt3 ppm 

2.014·10-3 123 

2. 056 · l o-4 12 

l. 000 · l o-4 9.6 

l.973·10- 3 70 

4.477· l0-4 1.8 

1.774·10-4 4.3 

l.000·l0-4 3.9 

2.836·10-3 65 

9(21) 

Table 2: Decay characteristics of the radionuclides used (ref 3). 

Nuclide Half-Life Mode of decay Measured radiations 

152Eu 12.4y EC, S y 

235Np 410 EC, ex U x-rays 

237Pu 45.6d EC, ex Np x-rays 
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Table 3: Experimental transport parameters calculated from break through 

curves and radionuclide distribution on fissure surfaces. 

Radionuclide Fissure Fissure a 
a/Vt Radionuclideb 

volume {Vf) surface (af) retardation 

3 an2 -1 
R = UJUrn an cm 

152Eu 1.2 64 53 1067 
3000 

235Np 1.35 64 47.5 4.2 

237Pu 0.6 135 225 > 2 · 1 o5 

a) Geometric area. 

b) Velocity of water (Uw) and radionuclide (Urn) respectively. 

Table 4: Distribution coefficients calculated from break through curves 

and radionuclide distribution on fissure surfaces. Distribution coefficients 

from batch equilibrium experiments. 

Radionuclide Particle size 
fraction 
cm 

0.01-0.0012 

0.0044-0.0063 

0.0044-0.0063 

Kd (equil) Ka a Kd a 

cm3/g cm3Jan2 an3/g 

l.4· 103 20.3 4. 2 · 103 

1.17·104 

30-70b 0.088 37 

b 
2-103-105 0>820 >3. 4 · 1 o5 

a) Calculated during geometric surface areas, using the equation 

Ka= Kd·p/a. 

b) Data taken from reference 4. 
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a) • LS- Cout/Cin b) • LS- Cout/Cin 
o l52Eu (C /C. ) x 102 o 152Eu (C /C. ) x 10 out ,n out ,n 
0.21 µm filter no filter 
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volume 0.6 cn2. 
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