

Radionuclide transport in a single fissure. A laboratory study

Trygve E Eriksen

Department of Nuclear Chemistry Royal Institute of Technology Stockholm Sweden 1983-01-19

SVENSK KÄRNBRÄNSLEFÖRSÖRJNING AB / AVDELNING KBS

POSTADRESS: Box 5864, 102 48 Stockholm, Telefon 08-67 95 40

RADIONUCLIDE TRANSPORT IN A SINGLE FISSURE. A LABORATORY STUDY.

Trygve E Eriksen

Department of Nuclear Chemistry The Royal Institute of Technology Stockholm, Sweden 1983-01-19

This report concerns a study which was conducted for SKBF/KBS. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

A list of other reports published in this series during 1983, is attached at the end of this report. Information on KBS technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26) and 1981 (TR 81-17) is available through SKBF/KBS. Radionuclide transport in a single fissure. A laboratory study.

..

Trygve E Eriksen Department of Nuclear Chemistry, The Royal Institute of Technology, S-100 44 Stockholm, Sweden.

CONTENTS	PAGE
SUMMARY	1
INTRODUCTION	2
EXPERIMENTAL	
Flow systems	2-3
Solutions	3
Tracer solution measurements	3
Distribution coefficient measurements	4
EXPERIMENTAL RESULTS	4-5
DISCUSSION	6-7
REFERENCES	8
TABLES	9-10
FIGURES	11-21

X

SUMMARY

Radionuclide migration have been studied in natural fissures oriented parallell to the axis of granite drill cores. A short pulse of the radionuclides solution was injected at one end of the fissure and the temporal change in radio-nuclide concentration of the eluate measured. After several hundred fissure volumes water had been pumped through the fissure following the radionuclide pulse the activity distribution on the fissure surfaces was measured. From the retardation of ${}^{152}\text{Eu}$, ${}^{235}\text{Np}$ and ${}^{237}\text{Pu}$ it is concluded that these radio-nuclides are transported in the oxidation states Eu(III),Pu(IV) and Np(V).

The distribution coefficients K_d calculated from flow and activity distribution data on the basis of geometric surface area/volume ratios are of the same order as published K_d values obtained from batch equilibrium experiments.

INTRODUCTION

The transport of radionuclides with groundwater in geologic media is largely determined by processes such as sorption, ion exchange, precipitation, complexation and hydrolysis.

For radionuclides such as actinides with more than one possible stable oxidation state the chemical conditions, e g redox potential, pH and concentration of complexing anions are of great importance. For the understanding and possible prediction of radionuclide migration in fissured crystalline rock, data from experiments carried out under well defined conditions are required.

Our laboratory studies are focused on the transport of radionuclides in single natural fissures and the migration of the moderately sorbed Cs^+ and Sr^{2+} ions are discussed in a previous report (1). The present report deals with the transport of Eu and the actinides Np and Pu.

EXPERIMENTAL

<u>Flow systems</u>: The rocks used in this study are granitic drillcores taken from Stripa mine at a depth of 360 m below ground. Each core used has a natural fissure running parallell to the axis. The cylindrical surfaces of the drillcores were sealed with a coat of urethane laquer to prevent any water to leave the rock except through the outlet end of the fissure. The granitic cylinders were thereafter mounted between plexiglas end-plates containing shallow in- and outlet channels slightly wider than the fissures (figure 1). Artificial groundwater was pumped for 2-3 days through the fissure to be used to preequilibrate the fissure surface. To characterize the waterflow artificial ground water containing a non-sorbing tracer was fed to the inlet channel by a peristaltic pump (Istmatec IP-4) ensuring a steady flow through the fissure. Flushing water was simultaneously fed by the same pump through the outlet channel to reduce the time delay due to the channel volume. The effluent was continuously fed to a fraction collector for analysis of the tracer concentrations. The tracer was added as a pulse of suitable duration. The radionuclides studied were fed into the fissure by the same technique. After several hundred fissure volumes of water had been pumped through the fissure the rock cylinder was opened and the tracer distribution on the fissure surface was measured.

<u>Solutions</u>: All solutions were prepared using artificial ground water synthesized to represent the natural water in contact with the granite rock. The water composition is given in table 1 below. In all experiments the water used was deoxygenated by N_2 purging and the actinide experiments were carried out in a glove box with N_2 atmosphere. To characterize the water flow a lignosulphonate ion (mol wt \sim 24 000) was used. This ion can be conveniently analyzed and do not sorb on the fissure surface. Tracer solutions of ¹⁵²Eu (Amersham), ²³⁵Np and ²³⁷Pu (Harwell) were prepared by diluting aliquots of acid (0.1-1 M HCl) stock solutions. The tracer concentrations used were ¹⁵²Eu (5·10⁻⁸ - $2\cdot10^{-7}$ mol·dm⁻³); ²³⁵Np (1·10⁻⁹ mol·dm⁻³); ²³⁷Pu(1.4·10⁻¹⁰ mol·dm⁻³). The decay characteristics of the nuclides and measured radiation are given in table 2 below.

<u>Tracer concentration measurements</u>: The lignosulphonate ion displays a strong optical adsorption band with maximum at 280 nm ($\epsilon \sim 3 \cdot 10^5$) and the LS⁻ concentration was therefore measured spectrophotometric at this wavelength. The ¹⁵²Eu, ²³⁵Np and ²³⁷Pu concentrations were determined from measurements of the activity using a (2" x 2") NaI well type detector.

The tracer activity on the fissure surfaces was measured with a $(2" \times 2")$ NaI planar detector fitted with a 0.6 cm² lead coli-

mator (figure 2). The detectors were connected to a computerized 256 channel pulse height analyzer.

<u>Distribution coefficient measurements</u>: Crushed granite was washed with ground water solution. The suspension was thereafter filtered through a 0.45 μ m pore size Millipore filter and the solid material dried at 105°C. Known amounts of the dried crushed granite were suspended in ¹⁵²Eu solutions for 24 h. The suspensions were filtered through 0.45 μ m pore size filters and the amount of ¹⁵²Eu in the granite and filtered solutions determined by γ -counting. The ¹⁵²Eu distribution coefficient was calculated using the equation

$$K_d = \frac{V}{W} \cdot R_S/R_L$$

where	V	H	volume of ¹⁵² Eu solution
	W	=	weight of crushed granite
	RS	=	net count rate of granite
	R	=	net count rate of filtered solution.

EXPERIMENTAL RESULTS

To characterize the water flow non-interacting tracers are required. A number of assumed water true tracers normally used for this purpose were tested. Break through curves for some of the tracers tested and the concentration ratios C_{out}/C_{in} at $t = 10 \cdot t_{0.5}$ are depicted in figures 3, 4. The experiments gave with one exception near identical break through curves for all the tracers tested. As seen from figure 4 the ¹³¹I concentration only reached the expected full value after a long delay. We have not investigated the reason for this effect any further but used NaLS in the present study.

 $\frac{152}{\text{Eu}}$: In some earlier experiments it was found that a few per cent of the 152Eu activity was transported through the fissure with the same velocity as water. The same phenomenon was observed in experiments with 2 cm³ 5 cm long columns filled with

crushed granite and 200-400 mesh H⁺ saturated Ag-50 ion exchanger resin. On filtering the 152Eu solution through a 0.21 µm filter the amount transported momentarily through the fissures could be very much reduced. To study the effect of the fraction of ^{152}Eu carried by particulates on the sorption on fissure surface experiments with and without 0.2 µm filter were carried out. Figures 5, 6 show eluate data for two experiments carried out with and without a 0.21 µm filter between the tracer solution reservoir and the inlet channel. The experiments were run simultaneously and the tracer solution fed from the same reservoir. The 152Eu distribution on the fissure surfaces of the drill cores used in these experiments are depicted in figures 7, 8. Before opening the drill core \sim 400 fissure volumes of ground water had been pumped through the fissure following a 15 minutes long pulse of tracer solution. The detection limit is ~ 5 cpm. In the batch adsorption experiments with 25, 50 and 100 mg crushed granite suspended in 25 ml solution the distribution coefficient was found to be $(1.4 \pm 0.2) \cdot 10^3$ cm³/g.

 $\frac{235}{\text{Np}}$: Data from corresponding experiments with 235 Np are shown in figures 9, 10. As seen the 235 Np activity is only retarded a factor 3-4. No 235 Np was found on the fissure surfaces on opening the drill core.

 $\frac{237}{Pu}$: No²³⁷Pu was detected in the eluate. The distribution of $\frac{237}{Pu}$ on the fissure surface after 2 400 fissure volumes of ground water had been pumped through the drill core following the pulse of tracer solution is depicted in figure 11. 40% of the $\frac{237}{Pu}$ was found on the surface of the inlet channel and 60% on the fissure surface within 2 mm distance from the inlet channel.

DISCUSSION

When a radionuclide transported by water through a fissure reacts with the surface of the fissure the radionuclide will be retarded relative to the water. In the simplest case of a fast reversible reaction and linear equilibrium the retardation factor R is given by the equation

$$R = \frac{U}{U_{rn}} = 1 + a \cdot K_a$$

- where U_{rn} , U_{W} is the velocity of radionuclide and water `respectively,
 - $a = a_f/V_f$ is the ratio of fissure surface area and volume, and $K_c \text{ cm}^3/\text{cm}^2$ is the surface distribution coefficient.

The radionuclide retardation R was calculated using the equation

 $R = (V_w/V_f) \cdot 1/\overline{1}$

where V_w is the total volume water pumped through the fissure. 1 is the fissure length and $\overline{1}$ the mean distance travelled by the radionuclide (from radionuclide distribution on fissure walls).

The K_a values calculated from the flow experiments are based on the geometrical fissure area, i e the surface roughness is not taken into account. Most of the published distribution coefficients (K_d) have been determined in batch experiments with crushed granite, and thereby calculated on weight and not surface area basis. The ratio of the distribution coefficients is given by the equation

 $K_a = K_d \cdot \rho/a$ where ρ is the density (g/cm^3) and a the surface/volume ratio of the granite.

Thus to compare the K_a values obtained from flow experiments with K_d values from batch equilibrium experiments knowledge of the exposed surface areas of the fissures and crushed granite are required.

A very approximate comparison can, however, be made if it is assumed that the exposed surface/geometric surface ratio is equal. The crushed granite is assumed to consist of spherical

beads and the surface area/volume ratio is thus 6/d, where d is the bead diameter. The transport parameters and K_d -values calculated on basis of these assumptions are given in tables 3 and 4 respectively. For comparison K_d values for the radionuclides ²³⁵Np and ²³⁷Pu obtained by Allard (4) are given in table 4. The K_d -values calculated from the flow experiments are somewhat higher than the K_d values obtained in batch experiments, but in view of the uncertainties involved the agreement is satisfactory. From the K_d -values obtained it can be concluded that the radionuclides studied were transported in the following oxidation states (5), Eu(III), Pu(IV), Np(V).

In our experiments a few per cent of the 152 Eu and 235 Np was carried with the water flow on particulates with d > 0.21 µm. This effect may partly be due to precipitation and partly to adsorption on particulates formed in the synthetic ground water.

ACKNOWLEDGEMENTS

The experimental help by P-I Olsson, I Johansson and S O Engman is gratefully acknowledged.

REFERENCES

- I Neretnieks, T E Eriksen and P Tähtinen Tracer movements in a single fissure in granite rock some experimental results and their interpretation, Report Prav 4.21.
- B Allard and G W Beall
 J Environm Sci and Health 1972, <u>6</u>, 507.
- C M Lederer, JM Hollander and I Perlman Table of Isotopes, Sixth edition, Wiley 1967.
- B Allard Sorption of actinides in granitic rock (in preparation).
- B Allard et al Sorption of actinides in well defined oxidation in geologic media, Scientific Basis for Nuclear Waste Management, Ed W Lutze, North Holland 1982.

Substance	Concentration		
	mol·dm ⁻³	ppm	
нсоз-	2.014.10 ⁻³	123	
H ₄ SiO ₄	2.056.10-4	12	
s0 ₄ ²⁻	1.000.10-4	9.6	
c1 ⁻	$1.973 \cdot 10^{-3}$	70	
Ca ²⁺	4.477.10-4	1.8	
M g ²⁺	1.774.10 ⁻⁴	4.3	
К+	1.000.10-4	3.9	
Na ⁺	2.836.10 ⁻³	65	

Table 1: Composition of the artificial ground water used in experiments (ref 2).

Table 2: Decay characteristics of the radionuclides used (ref 3).

Nuclide	Half-Life	Mode of decay	Measured radiations
152 _{Eu}	12.4y	EC, ß	γ
235 _{Np}	410	EC, α	U x-rays
237 _{Pu}	45.6d	EC, α	Np x-rays

1	Δ	1	2	3	١.
1	υ	L	6	1	1

Radionuclide	Fissure volume (V _f) cm ³	Fissure ^a surface (a _f) cm ²	a _f /V _f cm ⁻¹	Radionuclide ^b retardation R = U _w /U _{rn}
152 _{Eu}	1.2	64	53	1067 3000
235 _{Np}	1.35	64	47.5	4.2
237 _{Pu}	0.6	135	225	> 2·10 ⁵

Table 3: Experimental transport parameters calculated from break through curves and radionuclide distribution on fissure surfaces.

a) Geometric area.

^{b)} Velocity of water (U_w) and radionuclide (U_{rn}) respectively.

Table 4: Distribution coefficients calculated from break through curves and radionuclide distribution on fissure surfaces. Distribution coefficients from batch equilibrium experiments.

Radionuclide	Particle size fraction cm	K _d (equil) cm ³ /g	K _a ^a cm ³ /cm ²	K _d ^a cm ³ /g
152 _{Eu}	0.01-0.0012	1.4.10 ³	20.3	4.2·10 ³ 1.17·10 ⁴
235 _{Np}	0.0044-0.0063	30-70 ^b	0.088	37
237 _{Pu}	0.0044-0.0063	2·10 ³ -10 ^{5^t}	0>820	> 3.4 .10 ⁵

a) Calculated during geometric surface areas, using the equation $K_a = K_d \cdot \rho/a$.

b) Data taken from reference 4.

Figure 1. Experimental set up.

Figure 2. Detector set up for scanning the fissure surfaces. Collimator area 0.6 cm^2 .

Experimental break through curves for some tracers, assumed to be non-sorbing.

15(21)

no filter

Figure 6. ¹⁵²Eu concentration in eluate vs time (same experiment as in figure 5a).

16(21)

٠.

 152 Eu distribution on fissure surface 77.5 h after onset of tracer flow through fissure. $\Phi = 40$ mm, 1 = 80 mm, water flow 0.1 cm³/min, 0.21 µm filter. (Flow data plotted in figures 5a, 6).

Figure 8.

 152 Eu distribution on fissure surface 77,5 h after onset of tracer flow through fissure. $\phi = 40$ mm, 1 = 80 mm, water flow 0.1 cm³/min. No filter. Flow data plotted in figure 5b.

:

²³⁷Pu distribution on fissure surface, 10 days after onset of tracer flow through fissure. $\phi = 45 \text{ mm}, 1 = 150 \text{ mm}, \text{ water flow 0.1 cm}^3/\text{min}$. Fissure volume 0.6 cm².

1977-78

TR 121 KBS Technical Reports 1 - 120. Summaries. Stockholm, May 1979.

1979

TR 79-28 The KBS Annual Report 1979. KBS Technical Reports 79-01--79-27. Summaries. Stockholm, March 1980.

1980

TR 80-26 The KBS Annual Report 1980. KBS Technical Reports 80-01--80-25. Summaries. Stockholm, March 1981.

1981

TR 81-17 The KBS Annual Report 1981. KBS Technical Reports 81-01--81-16 Summaries. Stockholm, April 1982.

1983

TR 83-01 Radionuclide transport in a single fissure A laboratory study Trygve E Eriksen Department of Nuclear Chemistry The Royal Institute of Technology Stockholm, Sweden 1983-01-19

TR 83-02 The possible effects of alfa and beta radiolysis on the matrix dissolution of spent nuclear fuel I Grenthe I Puigdomènech J Bruno Department of Inorganic Chemistry Royal Institute of Technology Stockholm, Sweden January 1983

- TR 82-03 Migration of radionuclides in fissured rock: Some calculated results obtained from a model based on the concept of stratified flow and matrix diffusion Ivars Neretnieks Royal Institute of Technology Department of Chemical Engineering Stockholm, Sweden, October 1981
- TR 82-04 Radionuclide chain migration in fissured rock -The influence of matrix diffusion Anders Rasmuson * Akke Bengtsson ** Bertil Grundfelt ** Ivars Neretnieks * April, 1982
 - Royal Institute of Technology Department of Chemical Engineering Stockholm, Sweden
 - ** KEMAKTA Consultant Company Stockholm, Sweden
- TR 82-05 Migration of radionuclides in fissured rock -Results obtained from a model based on the concepts of hydrodynamic dispersion and matrix diffusion Anders Rasmuson Ivars Neretnieks Royal Institute of Technology Department of Chemical Engineering Stockholm, Sweden, May 1982
- TR 82-06 Numerical simulation of double packer tests Calculation of rock permeability Carol Braester Israel Institute of Technology, Haifa, Israel Roger Thunvik Royal Institute of Technology Stockholm, Sweden, June 1982
- TR 82-07 Copper/bentonite interaction Roland Pusch Division Soil Mechanics, University of Luleå Luleå, Sweden, 1982-06-30
- TR 82-08 Diffusion in the matrix of granitic rock Field test in the Stripa mine Part 1 Lars Birgersson Ivars Neretnieks Royal Institute of Technology Department of Chemical Engineering Stockholm, Sweden, July 1982

- TR 82-09:1 Radioactive waste management plan PLAN 82 Part 1 General Stockholm, June 1982
- TR 82-09:2 Radioactive waste management plan PLAN 82 Part 2 Facilities and costs Stockholm, June 1982
- TR 82-10 The hydraulic properties of fracture zones and tracer tests with non-reactive elements in Studsvik Carl-Erik Klockars Ove Persson Geological Survey of Sweden, Uppsala Ove Landström Studsvik Energiteknik, Nyköping Sweden, April 1982
- TR 82-11 Radiation levels and absorbed doses around copper canisters containing spent LWR fuel Klas Lundgren ASEA-ATOM, Västerås, Sweden 1982-08-11
- TR 82-12 Diffusion in crystalline rocks of some sorbing and nonsorbing species Kristina Skagius Ivars Neretnieks Royal Institute of Technology Department of Chemical Engineering Stockholm, Sweden, 1982-03-01
- TR 82-13 Variation in radioactivity, uranium and radium-226 contents in three radioactive springs and along their out-flows, northern Sweden John Ek Sverker Evans Lennart Ljungqvist Studsvik Energiteknik AB Nyköping, Sweden, 1982-06-03
- TR 82-14 Oral intake of radionuclides in the population A review of biological factors of relevance for assessment of absorbed dose at long term waste storage Lennart Johansson National Defense Research Institute, Dept 4 Umeå, Sweden, October 1982
- TR 82-15 Radioactive disequilibria in mineralised drill core samples from the Björklund uranium occurrence, northern Sweden J A T Smellie Geological Survey of Sweden Luleå, December 1982
- TR 82-16 The movement of a redox front downstream from a repository for nuclear waste Ivars Neretnieks Royal Institute of Technology Stockholm, Sweden, 1982-04-19

- TR 82-17 Diffusion of hydrogen, hydrogen sulfide and large molecular weight anions in bentonite Trygve E Eriksen Department of Nuclear Chemistry Royal Institute of Technology, Stockholm Arvid Jacobsson Division of Soil Mechanics University of Luleå Sweden, 1982-07-02
- TR 82-18 Radiolysis of ground water from spent fuel Hilbert Christensen Erling Bjergbakke Studsvik Energiteknik AB Nyköping, Sweden, 1982-11-27
 - TR 82-19 Corrosion of steel in concrete Carolyn M Preece Korrosionscentralen Glostrup, Denmark, 1982-10-14
 - TR 82-20 Fissure fillings from Finnsjön and Studsvik, Sweden. Identification, chemistry and dating Eva-Lena Tullborg Sven Åke Larson Swedish Geological, Gothenburg December 1982
- TR 82-21 Sorption of actinides in granitic rock B Allard Department of Nuclear Chemistry Chalmers University of Technology Göteborg, Sweden 1982-11-20