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ABSTRACT 

A stochastic theory for flow and solute transport in a single variable aperture 

fracture, bounded by a sorbing porous matrix into which solutes may diffuse, is 

developed using a perturbation approximation and spectral solution techniques 

which assume local statistical homogeneity. The theory predicts that the effective 

aperture of the fracture for mean solute displacement will be larger than the 

aperture required to calculate the large-scale flow resistance of the fracture. 

This ratio of apertures is a function of the variance of the logarithm of the 

apertures. The theory also predicts the macrodispersion coefficient for large -scale 

transport in the fracture. The resulting macrodispersivity is proportional to the 

variance of the logaperture and to its correlation scale. When variable surface 

sorption is included, it is found that the macrodispersivity is increased 

significantly, in some cases more than an order of magnitude. It is also shown 

that the effective retardation coefficient for the sorptively heterogeneous fracture 

is found by simply taking the arithmetic mean of the local surface sorption 

coefficient. Matrix diffusion is also shown to increase the fracture macrodispesivity 

at very large times. A reexamination of the results of four different field tracer 

tests in crystalline rock in Sweden and Canada shows aperture ratios and 

dispersivities that are consistent with the stochastic theory. The variance of the 

natural logarithm of the aperture is found to be in the range of 3 to 6 and 

the correlation scales for logaperture ranges from .2 to 1.2 meters. Detailed 

recommendations for additional field investigations at scales ranging from a few 

meters up to a kilometer are presented. 
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1. INTRODUCTION 

The movement of solutes through fractured rocks of relatively low permeability 
has been the focus of much recent research, largely because of the need to 
quantify the transport mechanisms in these rocks in terms of their radioactive 
waste isolation capabilities. Much of the theoretical modeling of fractured rocks 
has emphasized the flow and transport in networks of individual fractures which 
are planar and of constant aperture (Long et al (1982), Schwartz et al (1983), 
Robinson (1984)). Another modeling approach which has been extensively explored 
since the initial work by Neretnieks (1980) is the so-called matrix diffusion 
model, which considers flow in a single constant aperture fracture with diffusive 
transport in the surrounding porous but impermeable rock matrix. Brown and 
Gelhar (1986) review the various modeling approaches which have been used 
for fractured rock transport. Recently de Marsily (1985) has suggested a purely 
geometric network approach based on percolation theory. However, the fact is 
that there is no established theory which has been shown to be valid for 
transport in fractured rocks at field scales of tens to thousands of meters. 

Recent small-scale field observations by Abelin et al (1985) suggest that flow 
within an individual fracture is limited to a relatively small portion of the 
fracture plane. This so-called channeling implies that individual fractures cannot 
be treated as having constant aperture has been done in network models. Recent 
results from a tracer test which isolated a single fracture (Lever et al (1985)) 

show a large dispersion effect in the single fracture and indicate that the 
fracture cannot be treated as one of constant aperture. These observations bring 

into question the basic building block which has been used in all network 

modeling, i.e. the assumption of a constant aperture planar fracture. 

The influence of aperture variation on the flow in the fracture has been 
explored by Tsang and Witherspoon (1981) and Tsang (1984). In those studies 
the aperture is viewed as a random variable and its spatial correlation structure 
is not considered. Brown (1984) developed a stochastic approach which treats 
flow and solute transport in a planar variable aperture fracture where the 
aperture variability is characterized by a two-dimensional statistically anisotropic 

stationary random field. 

Stochastic models have been used extensively to treat flow and transport in 
heterogeneous porous media (Gelhar and Axness (1983), Gelhar (1984)). These 
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stochastic theories are now being tested under large -scale field conditions, and 

initial results (Sudicky (1985)) indicate that the stochastic theory can predict field 

scale dispersivities. 

The purposes of this report are to develop a similar stochastic theory for 

transport in fractured rocks, and to review field observations from tracer tests in 

fractured rock, particularly those in Sweden, in relation to possible applications of 

such stochastic theories. First the stochastic theory for transport in a variable 

aperture fracture is developed. This analysis is an extension of the work of 

Brown (1984) and includes the important influence of the unsteadiness of the 

solute transport, as well as the effects of spatially variable surface adsorption and 

diffusion into the porous matrix. The results of several recent tracer tests in 

fractured rock are analyzed in relation to the predictions of the stochastic theory. 

These comparisons focus on the dispersion effect of the variable aperture as well 

as the difference between the effective apertures that must be used for hydraulic 

and solute transport calculations. The possible application of three-dimensional 

stochastic theories to large - scale transport in fractured rocks is also discussed 

briefly. Included are recommendations for additional theoretical developments and 

field investigations which could be used to evaluate the stochastic approach. 
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2. STOCHASTIC THEORY OF TRANSPORT IN A SINGLE VARIABLE 

APERTURE FRACTURE 

2.1 General formulation 

Consider laminar flow in a single variable aperture fracture which is surrounded 

by a porous but impermeable rock matrix. The flow configuration is depicted in 

Figure 1. If the slope of the fracture walls is not large, the local flow through 

the fracture can be represented by the classical cubic law, 

where 

i = 1,2 

<P = piezometric head [ L ] 

b{x 1 ,x 2 ) = fracture aperture [ L ] 

g = gravitational constant [ LIT 2 ] 

v = kinematic viscosity [ L 2 /T ] 

xi = space coordinates in the fracture plane [ L ] 

Qi = flow per unit width [ L 2 /T ] 

( 2 . 1 ) 

As discussed by Brown (1984) and Langlois (1964), the correction to (2.1) due 

to the variation in the aperture will be of order the cube of the slope of the 

aperture, so that it is entirely consistent to neglect this effect in view of later 

approximations that are introduced in this analysis. 

Assuming a rigid fracture and an incompressible fluid (water), conservation of 

mass of water flowing in a fracture requires that 

oQ. 
1 

ox. 
1 

0 1,2 [ 2. 2 ] 

The mass balance equation for a solute of a concentration c which is transported 

by the fluid flowing in the fracture can be written 
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(eh) 
a 

(Q.c) 
a 

[ E i j 
dC ] 2 f' 

dC + 
dX. -

dX. dX. 
- at + 

1 
1 1 J 

+ 2D dffil - r (b + 2 f') C ( 2 . 3) 
az z=O 

C = concentration in the fracture, [ M/L 3 ] 

t = time [ T] 

Eij = local fracture dispersion coefficient [ L 3 /T ] 

f' = surface sorption coefficient (the ratio of the concentration 

on the fracture surface to the concentration in the solution 

in the fracture) [ L ] 

m = concentration in the solution in the porous matrix [ M/L 3 ] 

D = effective molecular diffusion coefficient of the porous matrix 

[ L 2 /T] 

z = distance into porous matrix from the fracture wall [ L ] 

r = first order decay rate constant [ T- 1 ] 

Assuming that the diffusive transport in the static water within the porous matrix 

is predominantly in the z-direction, the concentration in the porous matrix is 

described by 

am 
at 

where 

a 2 m 
D az 2 - rm (2.4) 

D = D/(n + pKd), the effective diffusivity of the porous matrix [ L 2 /T ] 

n = porosity of the porous matrix 

p = bulk density of the porous matrix [ M/L 3 ] 

Kd = distribution coefficient of the porous matrix [ L 3 /M ] 

In addition, (2.3) and (2.4) are coupled by the following condition 

m ( z' t ; x, 'x 2) I z=O ( 2 . 5) 

Note that x 1 and x 2 , the coordinates in the plane of the fracture, appear only 

parametrically in the balance equation for the porous matrix, (2.4). 
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Models equivalent to (2.3) through (2.5) have been used by Neretnieks (1980) 

and Moreno et al (1983) among others to treat transport in fractures with 

spatially constant aperture. It is becoming evident from observations and seems 

obvious based on common sense that the aperture in real fractures is not going 

to be spatially constant. The focus of the following stochastic analysis is a 

quantitative evaluation of the effect of variable aperture on the transport process 

in a fracture. The influence of variable surface sorption and of matrix diffusion 

will also be analyzed. 

To describe the aperture variability, the aperture is treated as a two-dimensional 

spatial random field. In order to focus on the key elements of the problem a 

simple statistically isotropic and homogeneous (i.e. stationary) random field is 

used. The more complicated statistically anisotropic case has been considered by 

Brown (1984) for steady-state solute transport. Here the influence of a 

time-dependent concentration field is explored, along with the effects of variable 

surface sorption and matrix diffusion. The overall goal in these analyses is to 

find effective large -scale transport properties for the heterogeneous fracture 

system. Before proceeding with the solute transport analysis, it is necessary to 

develop a description of the spatially-variable flow field that is caused by the 

aperture variation. 

2.2 Flow analysis 

This analysis is very similar to that for two-dimensional flow in porous media 

(Mizell et al (1982)) and was developed in detail by Brown (1984). Here only 

the highlights are summarized. First the variables in (2.1) and (2.2) are 

represented by means and perturbations as follows 

E(Q'.) = 0 
I 

In b = In bQ + ~; E(~) 0 ( 2 . 6 ) 

~ = H + h, E(h) 0 

By using the logarithm of b, negative values of b are avoided. Using (2.6) in 

(2.2) it follows that 



clQ. 
1 

clx. 
1 

0 

which when subtracted from (2.2) leads to 

clQ '. 
1 

clx . 
1 

0 

Similarly, the flow equation (2.1) can be written 

e3{3 [JI. _ clh ] 
clx. 

1 

= T.e (1+3(3 +; (32 + ... )(Ji - :~.) 
1 

7 

( 2. 7) 

(2.8) 

(2.9) 

3 where T.e - b.e g/12v, the fracture transmissivity based on 

the geometric mean aperture, and Ji = - clH/ clxi, the mean hydraulic gradient. 

Retaining terms to second order in the perturbations, the mean flow becomes 

(2.10) 

The last term in (2.10) reflects the correlation between the aperture perturbation 

and the resulting head perturbation. This term is evaluated by solving for the 

head perturbation in terms of the aperture perturbation as follows. From (2.9) 

the flow perturbation can be written, to first order, as 

Q'. 
1 

T 11 ( 3J 1. (3 - ~) 
~ clx. (2.11) 

1 

and using (2.11) in (2.8), the equation relating the head and aperture 

perturbation becomes 

clx :1 
1 

a f3 
3J 1· ----ox. 

1 

(2.12) 
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This equation can be solved for a stationary head field by using the spectral 

representation theorem, 

OD 

h J e (2 .13) 

-OD 

where E[ dZh dZh*] = Shh (ki) dk 1 dk 2 , ki is the wave number vector, and 

Shh is the spectral density function for head (the asterisk denotes the complex 

conjugate). 

The corresponding representation for the logaperture perturbation is 

OD 

{3 I 
-OD 

e 
i k.x. 

1 1 (2.14) 

and using (2.13) and (2.14) in (2.12), along with the uniqueness of these 

representations, it follows that 

The cross-correlation term in (2.10) is then evaluated as follows 

00 

-OD 

OD 

J 
-co 

k.k. 
3JJ. _I_J S{3{3(k) dk 1 dk 2 

k2 

3J .o .. a{32 /2 
J 1 J 

where Oij = 1 if 

variance of In b. 

j and O if 

(2.15) 

(2.16) 

E({3 2 ), the 

This result makes use of the assumption that the logaperture field is isotropic, 

and therefore that its spectral density function is dependent on only the 

magnitude of the wave number k. Note that this result does not depend on the 



9 

specific form of the spectral density function of In b, or equivalently, on the 

covariance function or its correlation scale. 

Using (2.16) in (2.10), the mean flow becomes 

Qi = T ,e J i ; T ,e = b J g/ 12 v (2.17) 

That is, the effective transmissivity of the fracture is determined simply by using 

the geometric mean aperture in the cubic law. This result is equivalent to those 

of Gutjahr et al (1978) and Dagan (1979) for two-dimensional flow and 

statistically isotropic porous media. Brown (1984) has developed more general 

results for the statistically anisotropic case. These give relationships for the 

degree of anisotropy of the fracture transmissivity in terms of the ratio of the 

two correlation scales. 

The flow perturbation, after using the representation theorem, can be expressed 

in terms of the aperture perturbation by using (2.15) in (2.11) 

(2.18) 

3T,e Jj 

This relationship is important in the transport analysis which follows. 

2.3 Unsteady transport with no sorption and diffusion 

Using r = D = 0 in (2.3) and expressing the concentration in terms of the 

mean and perturbation, 

c=c+c', E(c) = c, E(c') = 0 (2.19) 

the mean transport equation becomes, after taking the expected value, 
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+ r(b c + E(b'c')] 0 (2.20) 

where Eij = E Oij, E constant. 

Note that the local fracture dispersion term has been treated as a constant, say 

corresponding to molecular diffusion. The influence of variable local dispersion 

can also be analyzed, but its effect is easily shown to be secondary. The terms 

involving products of perturbations in (2.20) must be evaluated in order to 

determine the mean behavior. To evaluate these terms the solution for the 

concentration perturbation must be found. By subtracting (2.20) from (2.3) the 

equation for the concentration perturbation can be written 

oc oc' oc oc' o 2 c' b' + b + Q'. + Q E + r(bc' + cb') a"t ~ 1 ox. i ox. - ox~ 
1 1 I 

0 (2.21) 

This expression is valid to first order in perturbations. In order to correctly 

capture the effect of an unsteady mean concentration field it is necessary to 

express (2.20) and (2.21) in a moving coordinate system which translates with 

the mean advection velocity, V. For convenience select the coordinate system so 

that the mean flow is in the x 1 direction, that is, 

0 

The moving coordinate system can then be expressed as 

X - Vt; 
1 

(2.22) 

The mean advection velocity is not known at this stage but will be determined 

by evaluating the cross-correlation terms in (2.20). In this moving coordinate 

system, which corresponds to riding along with a moving front or a pulse of 

solute, the mean concentration gradient will vary slowly in time. Writing the 

mean and perturbation equations, (2.20) and (2.21), in moving coordinate system, 
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- Va b'c' + a c'QT + r(bc + b'c') = 0 "ar TT. 1 
1 1 

(2.23) 

(:~I L - V :~ ,J b t + b :~ t I L + ( Q - Vb) :~: + 
1 1 

dC d 2 C 1 

+ Q'. E + r b c' + r c b' - 0 1 ~- ~ (2.24) 
1 1 

where now c. 
1 C i ( ~ i ' t) and C i 

is the fact that in (2.23) 

b'~I at 
x. 

1 

a 
~t <b'c') I <> X. 

1 

because the aperture is not time dependent. 

c'. (~.,t). Also used 
1 1 

Note that the overbars denote expected values. The terms 

b'c' and Q.'c' in (2.23) will now be related to the mean 
l 

concentration field through the solution for the con-

centration perturbation. 

Consider situations in which the mean concentration field is dispersed over an 

area much larger than the correlation scale of the aperture variation. In this 

situation the concentration gradient can be viewed as being locally constant, in 

which case a locally stationary solution for the concentration perturbation is 

possible according to (2.24). Thus the concentration perturbation is represented 

by 



00 

c' 

-oo 

00 

= 1 e 

-oo 

dZ 
C 

i( k ( t 
1 1 

+ Vt) + k t ] 
2 2 

dZ ( k. ; t ) 
C 1 

12 

(2.25) 

where the second line in (2.25) is used when the concentration is described in 

the moving coordinate system. Using (2.25) and the representation of b' 

00 

b' 1 
-oo 

e 
i k . X • 

1 1 

the equation for the concentration amplitude becomes 

(2.26) 

b aFI + (ik Q +Ek~+ rb)F 
~ L 1 1 

1 

Gj dZQ. - (c + er) dZb 
J 

(2.27) 

where F dZc, Gj 

. 
C + VG 

1 
(2.28) 

which is treated as being locally constant in relation to the perturbation equation. 

For large time and large displacement, the time derivative in (2.27) becomes 

small and 

dZ 
C 

n ik Q +Ek~+ rb 
1 1 

w = c + re 

- VG + re 
1 

vG 1 + ac;at It. + re 
1 

(2.29) 
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Gelhar (1986) has explicitly analyzed the effect of the transient term for the 

case of three-dimensional flow in porous media. For this large time asymptotic 

condition it is also consistent to neglect the time derivative of the mean 

concentration following the mean advection in w, because this term is easily 

shown to be much smaller than the term VG 1 • The cross-correlation terms in 

the mean equation (2.23) can now be evaluated. Only longitudinal dispersion will 

be treated here, so that only the following terms are considered. 

dZ 
C 

G 1 (dZQ - VdZb)/n - re dZb/n 
1 

Also in (2.23) the following term 

(2.30) 

is also small and introduces only high order derivatives of the mean 

concentration in the mean equation. Therefore the two terms 

a --,--Q, V a -c'b' arc 1- a'"C 
1 1 

C I (QI - Vb I) ar 1 
1 

(2.31) 

are the only terms in the mean equation which will produce a second derivative 

of the mean concentration, that is, a macrodispersion effect. These terms are 

evaluated as 

C I (QI - Vb I) 
1 

-00 

00 

G 1 J 

where y Q; - Vb I , 

-00 

dZ 
y 

00 

* (dZ dZ /n) y y - re 

-00 

(2.32) 
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Integrals of the type appearing in (2.32) have been evaluated exactly by Gelhar 

and Axness (1983). Here a simple approximate solution which captures the 

essential behavior of the integral is used. Gelhar and Axness (1983) have shown 

that the local dispersion term has a very small effect on the macrodispersion 

and may cause a very slight decrease in the overall dispersion effect. Here the 

local dispersion is simply set equal to zero and the effect of a small radioactive 

decay term r is considered. Then the first integral on the left hand side of 

(2.32) can be written 

00 

I I 
-oo 

S ( k , k ) dk dk 
yy 1 2 1 2 

(ikQ+rb) 
1 

00 

I J 
-oo 

2 

00 

dv dk 
2 

7r 

Q I S ( 0, k ) dk 
YY 2 2 

-oo -oo 
(2.33) 

for r ➔ 0 where v k 1 Q/rb. 

The imaginary term in the integral cancels out because the spectrum Syy is even 

in k 1 and the last expression is obtained in the limit as r becomes very small, 

that is, when 

rb/Q << >-

where >- is a correlation scale associated with the spectrum S (3 (3. 

Physically this corresponds to a small amount of decay during the period of time 

that the solute moves one correlation scale. As r goes to zero, the second term 

on the right hand side of (2.32) disappears, as does the last term in the mean 

equation (2.23). That is, the mean equation reduces to the form 

0 (2.34) 

in which only longitudinal mean concentration gradients are included. The term B 

is the fracture macrodispersion coefficient which is given by the integral in 

(2.33): 
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00 

B = ~ I S ( 0 , k ) dk 
Q yy 2 2 

(2.35) 
-oo 

The coefficient of the advection term in (2.34) must, by definition, be zero 

because V was defined to be the mean advection velocity. Therefore we have 

the simple common sense result that 

V = Q/b (2.36) 

Thus the average advection velocity of a nonreactive solute is simply the flux 

through the fracture divided by the average fracture aperture. Note that if the 

radioactive decay terms had been retained in (2.32) and (2.23) there would be 

an additional first derivative term in the mean transport equation and, as a 

result, a correction to the mean advection velocity. 

To evaluate the fracture macrodispersivity, y is represented by 

dZ 
y - VdZ 

b 

(2.37) 

where (2.18) has been used for dZo 1 with the mean hydraulic gradient in the 

x 1 -direction. Using the relationship for Q in (2.17) and evaluating (2.37) for 

k 1 = 0, 

dZ (0,k) = Q(3dZ{3(0,k) - dZb(O,k )/b) y 2 2 2 
(2.38) 

The spectrum required in (2.35) is then found by taking the expected value of 

(2.38) multiplied by its complex conjugate. Note that the resulting spectrum will 

depend on the spectrum of the logaperture process and the spectrum of the 

aperture process. These two spectra are not the same in general. However, if b 

is lognormal it is possible to relate the covariance function of the aperture to 

the covariance function of the logaperture as discussed by Gutjahr et al (1978). 

They show that the covariance function of b can be related to the covariance 

function of {3 by the following 



2 [ exp(R/3/3) - 1] 
0 h exp (aJ) - 1 

16 

(2.39) 

The existence of this relationship then implies that the spectra are related to a 

transfer function relationship of the form 

H(k ,k )dZ1-1 
1 2 1-.1 

(2.40) 

where H is the transfer function. Equation (2.38) leads to the spectral 

relationship 

s 
yy Q 2 (9 s/3/3 - 6 s/3b/b + sbb/b 2 ) 

Q 2 (3 - H/b) 2 s1313 

(2.41) 

where S13b is the crosspectrum between /3 and b, and (2.40) has been used. An 

approximate relationship will be developed to account for the influence of 

nonlinear relationship between logaperture and aperture as follows. First the 

spectrum of Iogaperture is assumed to be that corresponding to an exponential 

covariance 

Q2 >-. 2 

s /3 /3 
/3 

2 1r [ 1 + >-. 2 ( k 2 + k2) ]3/2 
1 2 

(2.42) 

and 

00 

J S/3/3(0,k 2 ) dk 
2 

>-./ 1r 
2 a /3 (2.43) 

-oo 

where >-. is the correlation scale. This gives the contribution of the first term in 

(2.41) to the macrodispersion coefficient in (2.35). For the last term in (2.41) it 

would be assumed that a similar relationship applies but that the variance and 

the correlation scale of b appear in the expression, and the middle term 

involving the crosspectum in (2.41) will be assumed to be the result of forming 

the square of the difference. Then the integral from (2.35) can be approximated 

as 



B 

where f 

Q a;>- (3-f) 2 

(ab/b a(3)J>-b/>-. 

For a lognormal distribution 

2 a 
(e (3 1) 1/2 

2 
a 

[ 1 [e (3e_l - .en - 2 .en 
a (3 

17 

(2.44) 

(2.45) 

e- 1 in (2.39), 

(2.46) 

From (2.46) it can be seen that the correlation scale for the aperture will be 

less than that for the logaperture, and that this difference increases as a (3 

increases. From (2.45) and (2.46) it is seen that f in (2.44) will be a function 

of a (3 2 ; when the logaperture variance a (3 2 is small f approaches 1 and as 

<J (j 2 increases f increases, for example, to 3 at a (3 2 = 5.5. Therefore this 

term will have a numerically significant effect on the predicted macrodispersion 

coefficient in the likely range of a (3 2 • 

If the mean equation (2.34) is then divided by b, the 

dispersion coefficient term has the form 

B/b ( Q/b) a; >- ( 3 - f) 2 VA (2.47) 

using the advection velocity from (2.36). Here A is the fracture dispersivity 

A (2.48) 

This form is similar to the macrodispersivity for a two-dimensional porous 

medium flow (Gelhar and Axness (1983), equation 71 with >- 1 = >- 2 ). However, 

here there is an important difference in that the influence of the variation of 



18 

fracture aperture produces the term f in (2.48) and significantly modifies the 

magnitude of the dispersivity. Note that this result indicates that the dispersivity 

is a fracture property, i.e., it is not velocity dependent as would be the case if 

a Taylor-type dispersion model were used. In that case the dispersion coefficient 

depends on the square of the velocity, so that the dispersivity increases as the 

first power of velocity. 

The two key results of this development are (2.36), the expression for the mean 

advection velocity, and (2.48), the macrodispersivity of the fracture. These 

relationships will be used later in interpretation of some of the tracer tests. 

The flow analysis showed that the effective hydraulic aperture of the fracture is 

the geometric mean (see (2.17)), whereas for the transport analysis the aperture 

which produces the mean advection velocity is the arithmetic mean. For a 

lognormal distribution, the ratio of geometric and arithmetic means is 

= b /b 
h C 

(2.49) 

where bh designates the hydraulic aperture which would be calculated from the 

classical cubic law in a hydraulic experiment where the flow rate and the 

pressure gradient are measured, and the bc designates the aperture that would be 

determined from a tracer test in which the volumetric flow rate and the mean 

residence time are observed. 

2.4 Variable surface sorption 

The case of variable surface sorption can be treated as a relatively simple 

extension of the analyses in Section 2.3 if it is noted that the transport equation 

(2.3) can be written for the nondiffusive case as 

ac 
'.'\ + Q. 
o t I 

ac 
ax. 

I 

a ac 
-0 - ( E . . ----) + r ( b + 2 r) c = o 

X. I J oX . 
I J 

(2.50) 
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The sorption term always appears as a term added to b. This combination can 

then be used as a modified aperture, 

8 = b + 2r (2.51) 

and the previous analysis is revised as follows. As illustrated in Figure 2, the 

variation in r will not in general be perfectly correlated with that of b; one 

may expect the relationship of the form 

r r + fb + 'Y/ 
0 

(2.52) 

Here r O and r are constants and 'Y/ is a zero mean residual noise term which 

is not correlated with b, i.e., 

(2.53) 

Equation (2.52) can be viewed as a linear regression between r and b where 'Y/ 

is the residual. With this relationship the perturbation in 8 can be written as 

8' = (1+20b' + 2TJ (2.54) 

I The analysis then proceeds exactly as in Section 2.3 with b' replaced by 0 . 

Essentially all the terms involving b' are multiplied by 1 +2 r. The noise term 

simply adds an additional independent contribution to the dispersivity. The result 

for the mean transport equation analogous to (2.34) is 

(2.55) 

where V is the mean advection velocity of the solute and 

(2.56) 

where a 11 2 and >- 'Y/ are the variance and correlation scale of the 'Y/ process, 

which is assumed to have an exponential covariance with a spectra of the form 
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of (2.42). Again the advection term in the moving coordinate system must 

disappear so that 

V 

where R 

Q 

8 

Q Q (2.57) 
b + 2f' b R 

1 + 2r'/b is the retardation factor. 

This is an important result in that it demonstrates that the effective surface 

sorption coefficient is just the arithmetic mean. 

The fracture macrodispersivity is found from (2.56) in the form 

A B/8 V o(32 >..[3-(1+2t)f/R] 2 + 4o 2 >.. /8 2 

T/ T/ 
(2.58) 

Note that the resulting macrodispersivity with a variable surface sorption is not 

the same as that for the nonreactive case. The uncorrelated noise term will 

always increase the dispersivity whereas the correlated effect may increase or 

decrease the dispersivity depending on the sign of r, and the magnitude of f 

and the retardation factor. 

2.5 Matrix diffusion effects 

Here a simplified analysis is developed to demonstrate the influence that matrix 

diffusion will have on the macrodispersion process in a variable-aperture 

fracture. Before proceeding with the stochastic analysis some elementary, but 

apparently not well known, features of the classical deterministic matrix diffusion 

model will be explored because these features are used to develop the stochastic 

approach. 

The classical matrix diffusion model for a constant aperture fracture is obtained 

from (2.3) by taking the parameters to be constants. Here the case with no 

surface sorption (r = 0) or radioactive decay (r = 0) will be considered, and 

the model takes the form 
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(2.59) 

where U = Q/b, and Df 

constant). 

E/b is the dispersion coefficient of the fracture ( a 

Only one - dimensional transport is considered. Diffusive transport in the porous 

matrix is described by (2.4) with r = 0, i.e., 

(2.60) 

which must satisfy the condition that 

m(O,t) = c(x,t) (2.61) 

In order to visualize the influence of matrix diffusion, it is convenient to express 

the term involving m in (2.59) in terms of the concentration c in the fracture. 

That can be done by noting that a general solution to (2.60) which satisfies 

(2.61) is 

t 

m(z,t) I 
r=O 

ac I at erfc 
t=T 

(2.62) 

and evaluating the derivative at c 0, 

ac I at 
t=T 

dT (2.63) 
.hrD(t-r) 

t t r~ I dt o 2 c I (t-r)dr 
+ ... ] - - - ~ at 

.hrD(t-r) hrD(t-r) 
r-0 r-0 

2 [ ft 
oc t 3/ 2 o 2 c 

+ ... ] at - ~ 
.h:D 
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where the approximate expressions on the last two lines have been obtained by 

expanding ac/ at around the point t = r, that being the area of dominant 

contribution to the integral. Using the last line of (2.63) in (2.59), 

(2.64) 

where it has been assumed that there is no sorption in the matrix. Equation 

(2.64) demonstrates, in a simple approximate form, the influence of matrix 

diffusion. The term involving the first derivative in time on the right hand side 

of (2.64) can be seen as a time-varying retardation effect due to matrix 

diffusion, whereas the second derivative in time can be shown, by substituting 

ac/ at from the left side of the equation, to produce a term involving a second 

derivative in the space coordinate, i.e., an additional dispersion effect due to 

matrix diffusion. 

The relative importance of matrix diffusion is reflected by the time dependent 

coefficient multiplying the right hand side of (2.64). Physically this can be 

recognized as the ratio of a diffusion thickness 

o = 4 /Dnt / 1r (2.65) 

to the fracture aperture. When the o/b is large, the matrix diffusion effect is 

dominant. In that case it is easily shown that the second derivative term leads 

to an additional dispersion effect which is proportional to 

which is in the form of a Taylor dispersion coefficient but, in this case, 

increases as the square root of time because of the factor o/b. The above 

features of retardation and additional dispersion due to matrix diffusion can also 

be verified by taking the first and second spatial moments of the concentration 

from the exact solution for a pulse input with no fracture dispersion as given by 

Neretnieks (1980). 

The primary influence of matrix diffusion in terms of the stochastic analyses of 

a variable aperture fracture will be through the retardation term associated with 
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the first derivative on the right hand side of (2.64). The resulting mean 

advection velocity of a solute is 

V - U/(l+o/b) - Q/(b+o) 

This feature will be incorporated in the stochastic analysis which follows. 

The stochastic analysis of the variable aperture situation is again very similar to 

the development in Section 2.3. The model equation to be used in this analysis 

is based on (2.3) with the matrix diffusion term approximated as discussed 

above. 

ac 
- 0 at (2.66) 

Here only the first derivative in time from (2.64) has been included because it 

is easily shown that the second derivative does not affect the evaluation of the 

storage or dispersion terms in the mean equation. Under this condition the 

influence of matrix diffusion on the mixing process in the variable aperture 

fracture is a very simple one which is represented by an additional time 

dependent storage term, that is, the term o in (2.65). The method of analysis 

and results from Section 2.3 can then be applied directly by replacing b by 

b + o. Note here that the local dispersion term in a fracture has been retained 

but that the radioactive decay term is omitted. The analysis proceeds with 

exactly the same steps as in Section 2.3 except for the evaluation of the 

integral in (2.33), which differs because now the fracture dispersion term has 

been retained. That integral is evaluated as follows 

00 

I I i k Q +Ek? 
1 1 

JooJ S k ~ E yy I k 
k2Q2 + £2(k?)2 dk1d 2 

1 1 1 -oo -oo 

00 
S ( Ev /Q, k 2) (£2v2/Q2 + k 2) 1 I I YY 2 

dvdk 2 Q V 2 + (£2v2/Q2 + k2) 
2 

-oo 

00 
S (O,k) k2 

00 

1 I I yy 2 2 ?r I s (O,k 2)dk 2 Q V 2 + k2 dvdk 2 Q yy 2 
(2.67) -oo -oo 
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for E ➔ 0, i.e., E/Q>. << 1. If E = Db, E/Q>. is on the order 

of 1 o- 4 so that molecular diffusion has no effect on the macro­

dispersion. 

If Taylor dispersion is considered in the fracture, that ratio will still be small 

for apertures as large as a millimeter. 

The results for the case with matrix diffusion are found simply by replacing b 

by b+ fJ in the results in Section 2.3. Then the average advection velocity of a 

solute becomes, from (2.36), 

V Q/(b+fJ) (2.68) 

and when this velocity is used in the development for the macrodispersion 

coefficient, (2.44) is replaced by 

B (2.69) 

where 

Therefore the effect of matrix diffusion on the macrodispersion coefficient is to 

produce a coefficient which will increase slowly with time because of the added 

fJ term in f. 

The above macrodispersion term is then incorporated in the mean transport 

equation with matrix diffusion as follows 

with m = c at z = 0 and 

aiii 
at D - D/n 

2D aiiil 
az z=O 

(2.70) 

(2.71) 
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This of course is the classical matrix diffusion model except that the 

macrodispersion coefficient is a function of time according to (2.69). Existing 

analytical and numerical solutions of this system can be used in applications. 

2 .6 Discussion and results 

Several important new results have been developed in the previous sections. First 

of all, it has been shown that the stochastic theory provides a unified 

quantitative explanation of both the channeling effect that has been observed in 

natural fractures and the macrodispersion effect of the aperture variability. The 

channeling effect is reflected in the ratio of the hydraulic aperture to the solute 

aperture (see (2.49)) and the dispersion effect is predicted by (2.48), which 

shows the dependence of the fracture macrodispersivity on the variance and 

correlation scale of the logaperture process. The factor f in (2.48) reflects the 

effect of the aperture variation through the storage term in the unsteady 

transport equation. This effect is quantitatively very important and reduces the 

dispersivity. This behavior differs significantly from the porous medium case 

where the analogous variation in porosity produces only a minor effect. 

When surface sorption is included in the analysis (Section 2.4), it is found that 

there are significant changes in the nature of the result. First of all, it is shown 

that the effective retardation coefficient for a spatially variable surface sorption 

coefficient can be found simply by taking the arithmetic mean of the variable 

surface sorption coefficient (see (2.57)). This is a simple but very important 

observation because it provides a sound basis for estimating large scale retardation 

coefficients from a number of small scale measurements. It is also found that 

the sorption process has a very significant effect on the macrodispersivity of the 

fracture. This is reflected in (2.58) which shows that the dispersivity can increase 

significantly with increasing retardation coefficient. This effect is illustrated in 

Figure 3 which shows macrodispersivities calculated for sorbing and nonsorbing 

solutes. 

When the effect of matrix diffusion was included (Section 2.5), it was found, 

using an approximate analysis which incorporates the effect of matrix diffusion in 

the concentration perturbation equation through a time-varying retardation effect, 

that the fracture macrodispersivity is significantly affected by matrix diffusion. In 

this case the result is a time varying macrodispersion coefficient which increases 

with time (see (2.69)). This effect is illustrated graphically in Figure 4. Note 
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that the results for variable surface sorption are analogous to similar results for 
the three -dimensional porous medium case ( Garabedian and Gelhar (1985)). 

The theoretical results developed here demonstrate how the large-scale dispersion 
process in a single fracture is influenced by the local variations of hydraulic 
properties as well as by sorption and matrix diffusion. The aperture variation 
produces a variation of flow velocity in the fracture which is manifest as a large 
scale dispersion effect. When the surface sorption coefficient varies it also affects 
the local advection velocity of a sorbing solute, and consequently an independent 
variation in sorption leads to an increased dispersion effect. When the variation 
of sorption is related to the hydraulic characteristics, it may increase or decrease 
the dispersion. Matrix diffusion, being analogous to a retardation effect, also has 
an influence on the large scale dispersion coefficient. In this analysis the 
interaction between an unsteady mean concentration field and the variation in 
storage due to aperture variation is a very important element. This interaction 
seems to be much more important in a fracture flow than in porous media 
where the analogous quantity would be a porosity variation. 

The analysis developed here invoked a number of assumptions, a key one being 
that of relatively small perturbations. Previous experience with this approach 
( Gelhar (1986)) indicates that the perturbation approximation is valid for rather 
large variability, especially in the case of the flow equation. The theory should 
also be extended to treat a statistically anisotropic aperture process and transverse 
dispersion. In any case there is a need for careful numerical and field 
experimentation to evaluate the limitations of the theory presented here. Monte 
Carlo-type simulations for this two-dimensional system should be numerically 
quite feasible. Field experiments could be designed to test some of these results. 
The approach would be to measure the local variation of fracture aperture, 
transmissivity, surface sorption, and matrix diffusion. This local data could then 
be used to estimate the statistical parameters required to calculate the large-scale 
parameters from the stochastic theory. Then large -scale hydraulic and tracer tests 
would be carried out to determine the large-scale transmissivity, solute aperture 
and macrodispersivity. This approach then allows independent comparisons of the 
predictions from the stochastic theory with the large scale field observations and 
thereby avoids the usual curve-fitting approach. 

When interpreting field observations of concentration in a variable aperture 
fracture it is important to recognize that the concentration represented by the 
theory is strictly a probability average or an ensemble mean. Evoking the ergodic 
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hypothesis, the mean concentration of the theory would be equivalent to a local 

areal average concentration. However, concentration measurements in the field 

more likely would involve a flow-weighted concentration. This difference can be 

accounted for as follows. The mean flow-weighted concentration is defined as 

c = E[ Q c ]/E ( Q ) 
1 1 

C + 
E(Q'c') 

1 

Q 

(2.72) 

where the mean flow again is in the x 1 direction. The cross-correlation term 

in the second line of (2.72) is easily evaluated from the stochastic theory. 

Following the approach in (2.31) and (2.32), it is evident that 

E(Q'c') 
1 (2. 73) 

where A is a modified dispersivity. Using this expression 
in (2. 72) and substituting c from (2. 72) it is easily shown that 

0 (2.74) 

where the result has been converted to the fixed coordinate system. This result 

shows that the same mean transport equation applies to the flow-weighted 

concentration. This shows that tracer tests in which flow-weighted concentration 

is measured can be interpreted using the usual advection dispersion equation, and 

that the same transport coefficients apply. 

Applications of the results of the stochastic theory developed in this chapter 

could be of two types. First, the relationships for the hydraulic to solute 

aperture ratio and the macrodispersivity could be used in large-scale network 

models to portray more realistically the hydraulic and transport properties of 

individual fractures. This would be done simply by using a smaller hydraulic 

aperture to calculate the head drop in a fracture. The dispersion in an 

individual fracture would then be calculated from expressions such as (2.48) 

which predicts much higher dispersion than would be calculated from the classical 
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Taylor result. Secondly, the results here might be used directly to interpret the 

behavior of large-scale continuous fracture zones. In the next chapter some of 

the field information from existing experiments is reviewed as it relates to the 

stochastic theory. 
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3. ANALYSIS OF FIELD EXPERIMENTS 

3 .1 Purpose and scope 

The primary goal of the analysis and interpretation developed here is to examine 

quantitative information from existing field experiments on solute transport in 

single fractures, emphasizing features relating to the stochastic theory developed in 

Chapter 2. This review focuses on several tracer experiments that have been 

carried out in Sweden, as well as one recently reported test in Canada. For 

each of the sites considered, the general description of the site and the actual 

test configuration were reviewed before proceeding with data analysis. Then an 

independent reanalysis of the hydraulic and tracer data was undertaken. Finally 

the revised parameters which resulted from the data analysis were interpreted in 

terms of the predictions from the stochastic theory. Some related laboratory and 

field experiments were also reviewed and those are discussed briefly. 

3.2 Methods of interpretation 

Here the general approach which was used to analyze the field data is outlined 

with emphasis on the convergent radial flow configuration employed in several of 

the tests. The configuration of the radial convergent tracer test system is 

illustrated in Figure 5. Hydraulic and tracer measurements in this configuration 

can be used to calculate large-scale fracture parameters. The tracer is 

introduced through the observation well at the radius r 2 from the pumping well 

with radius r 1 • Assuming that the fracture behaves on a large scale as a 

homogeneous fracture, the transmissivitity of the fracture can be evaluated for 

steady flow as follows 

( 3 . 1 ) 

where q is the flow rate and Ah is the head drop between the observation and 

pumping wells. 

The hydraulic aperture can then be calculated from this transmissivity using 

(2.17) 

(12" T/g) 1/2 (3.2) 



~ tracer 

b 

Figure 5 Convergent radial flow tracer test configuration. 

w 
w 



34 

The tracer tests consisted of either a pulse or a continuous injection of tracer at 

the observation well. The solute aperture of the fracture was determined from 
the mean residence time of the tracer t O, the flow rate, and the volume of the 
fracture as follows 

b 
C 

- 2 2 b = qt /1r(r -r ) 
0 2 1 

( 3 . 3) 

The residence time and the dispersivity were estimated from the tracer 
breakthrough curves as depicted schematically in Figure 6. For the pulse input 

case the dispersivity was estimated from 

3r 
A 

2 

~ (3.4) 

and for the step input case 

A [~]2 ( 3 . 5) 
5 0 

These expressions are based on the general theory of Gelhar and Collins (1971) 
as applied by Welty and Gelhar (1986) to the convergent radial configuration. 
Those solutions take into account the varying velocity and dispersion coefficient 

associated with the radial flow system. These results are based on approximate 

solutions which are strictly valid for large Peclet number, say r /A > 10. These 

expressions are preferred over the more commonly used one - dimensional 

approximation (Lenda and Zuber (1970)), because they correctly account for the 
effect of the varying velocity. The one -dimensional expressions do not account 
for this varying velocity and consequently will overestimate the magnitude of the 

dispersivity by the factor 4/3. Consistent with the large Peclet number 

approximation, the time to peak for the pulse and the time to 50 % 

concentration for the step are used as the estimate of mean residence time of 

the solute. 

Methods such as those outlined above were used where possible to develop 
independent estimates of the hydraulic and transport properties for each of the 

field sites. 
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Figure 6 Schematic tracer breakthrough curves for convergent radial 

flow tracer tests; a) pulse input b) step input. 
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3.3 Interpretation for field sites 

Data from four different field sites were analyzed to obtain estimates of 

hydraulic and transport parameters, and to infer stochastic parameters for the 

theory in Chapter 2. Some key features of each of the field experiments are 

discussed below. Table 1 summarizes some overall features of each experimental 

site. At each site, only the behavior of nonsorbing, nonreacting tracers was 

considered. 

The field experiments at the Studsvik site are described by Klockars and Person 

(1982). Additional experiments with sorbing tracers at the Studsvik site are 

described by Landstrom et al (1983). Klockars and Person (1982) indicate that a 

zone consisting of several fractures was actually tested, but there is no explicit 

information on the individual fractures. Therefore it is not possible to make an 

independent calculation of the hydraulic properties. For this analysis, the 

hydraulic conductivity kp given in Table 6.5D of Klockars and Person was used 

along with the thickness of the tested zone, 1.3 meters, to arrive at a 

transmissivity. Only test B involving the flow path B1N-B6N was analyzed. This 

path was supposed to have four fractures (Klockars and Person (1982), Table 3) 

each of which carried an equal amount of flow. From that hydraulic information, 

the hydraulic aperture in Table 1 was calculated. The tritium breakthrough curve, 

Figure 6.3C, was used to determine the residence time and dispersivity for this 

test. The solute aperture shown in Table 1 was calculated from the residence 

time and the flow for an individual fracture. The dispersivity given in Table 1 

is somewhat lower than the value determined by Klockars and Person, probably 

because their one -dimensional analysis did not account for radial flow effects. 

The breakthrough curves for the tests at the Studsvik site all show very 

extensive tailing which, in my opinion, reflects the effects of unknown mixing 

conditions in the injection borehole and in the pumping borehole. The 

description of the experiment is not adequate to evaluate the nature of these 

effects, but it is my experience that for low porosity rocks such borehole effects 

can be dominant in the radial convergent flow system. For this reason only the 

rising part of the breakthrough curve was considered in the analysis. 

The field experiment at the Finnsjon site is described primarily in Gustaf sson 

and Klockars (1981). Additional pertinent information is found in Gustaf sson and 

Klockars (1984). There the flow rate and the head drop are given and using 
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TABLE 1. Summary of data from tracer tests 

Site STUDSVIK FINNSJON STRIPA-2D CHALK RIVER 

test convergent convergent convergent doublet 
con- radial radial radial - 1D pulse 
figura- pulse pulse step 
t ion 

Dis-
placement 
distance m 12 30 4 11 

bn µm 38 180 6.6 60 

be µm 680 990 120 600 

9.8 5.5 19 10 

A m 0.3 1.0 0.9 1. 4 

4.7 3.4 5.9 4.6 

>-. m 0.2 0.2 1.2 0.6 
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the packer test data from Figure 6.1 A of Gustaf sson and Klockars {1981), it 

was estimated that 31 % of the pumped flow was contributed from the tested 

zone. 

Using this information the fracture transmissivity was determined and the 

hydraulic aperture shown in Table 1 was calculated. The breakthrough curves in 

Figures 6.21 A- B of Gustaf sson and Klockars {1981) were used to estimate the 

mean residence time and the dispersivity. The resulting solute aperture and 

dispersivity are shown in Table 1. The dispersivity is somewhat lower than the 

value determined by Gustafsson and Klockars {1981). The breakthrough curves 

again show very extensive tailing which, in my opinion, is due primarily to 

borehole mixing effect. The information in the report is not adequate to evaluate 

this effects; therefore, the analysis was developed using only the rising part of 

the breakthrough curve. 

Hodgkinson and Lever {1982) have also analyzed some of the tracer tests at the 

Finnsjon site. Their analysis included the effects of radial flow and of matrix 

diffusion, but assumed that the dispersion coefficient was proportional to the 

square of the velocity. Their analysis also incorporated a boundary condition 

which was intended to account for the effect of mixing in the pumping 

borehole. In my view their boundary condition is not physically realistic in that 

it imposes a uniform concentration throughout the length of the pumping 

borehole and in the fracture at the pumping well. Their analysis yields an 

equivalent dispersivity which is an order of magnitude lower than that determined 

here or estimated by Gustafsson and Klockars {1981), and they used a 

molecular diffusion parameter which was several orders of magnitude larger than 

values found from laboratory tests. Their analysis uses matrix diffusion simply as 

a curve- fitting device to represent tailing which is actually due to physical 

mixing conditions in the injection and pumping boreholes. Moreno et al (1983) 

have also analyzed tracer tests at the Finnsjon site using several different 

one-dimensional models. They have shown that the observed tailing can be fit 

adequately with several different models. 

The data for the Stripa experiment are presented by Abelin et al (1985). The 

flow situation in this case was approximated as a radial flow through a 43 

degree sector into the ceiling of the tunnel which was approximated as a circular 

arc. The total flow through this sector was measured to be 23 ml/hour (see 

their Figure 6.2) and the natural pressure gradient was determined from data 

given in Appendix A4. From this information the transmissivity was calculated 
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and the hydraulic aperture was then determined from (3.2). This steady-state 

transmissivity estimate is of the same order of magnitude as determined from the 

transient pressure tests. The tracer test information was from the second injection 

at H2 (Figures 6.6 and 6.7). The iodide breakthrough curves were used and it 

was assumed the breakthrough curves had reached the maximum concentration. 

The dispersivity and solute aperture were then calculated using the step input 

results for a one -dimensional flow to calculate the dispersivity. In this case the 

flow configuration is essentially one-dimensional because the displacement distance 

of four meters is small compared to the inner radius of approximately 15 

meters. This experiment with separate sampling points along the intersection of 

the fracture with the ceiling of the tunnel is best analyzed in terms of the flux 

concentration, as discussed in Section 2.6. However, it was observed that iodide 

breakthrough curves at sampling holes 2.6 and 2.8 (Figures 6.6 and 6. 7) are 

practically the same in shape, so that the calculation of a flow-weighted 

concentration is not necessary in this case. 

The first injection at H2 was not analyzed because this test was very strongly 

influenced by the large initial injection rates, practically equal to the natural 

flow, and by the time-varying injection rate and resulting variable mass input of 

tracer. It is felt that this injection rate history is the dominant effect in 

determining the shape of the breakthrough curves in this case. Abelin et al 

(1985) have analyzed the first injection using several different one-dimensional 

curve- fitting models. I feel that their results demonstrate that the first injection 

is dominated by the time-variable tracer injection pattern. In some cases their 

dispersivities were of the same magnitude as was found here for injection 2 at 

H2. 

The fourth site which was analyzed here is at Chalk River in Canada, as 

described by Lever et al (1985). This test differed from the previous three 

experiments in that it involved a doublet type flow configuration produced by a 

pumping-recharge well pair. In this case no hydraulic information was given 

other than a hydraulic aperture which the authors indicate was determined in 

earlier tests; that value is shown in Table 1. Lever et al (1985) analyzed the 

breakthrough curves from this test using an analytical solution for the 

one-dimensional constant coefficient advection -dispersion equation, applied to 

several stream tubes between the recharge and pumping wells. This approach was 

found to give an excellent fit of the breakthrough curve over the entire range 

of the experiment (see Figure 7). The breakthrough curves were also reanalyzed 

using the type curves developed by Gelhar (1982) which include the effect of 
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the variable velocity field on the dispersion process. That model also fits the 

data very well and gives similar values for the solute aperture and the 

dispersivity; the only significant change was in be which is somewhat larger than 

510 µm found by Lever et al (1985). 

The data developed in Table 1 can be interpreted in terms of the results of the 

stochastic theory developed in Chapter 2. For the nonsorbing, nondiffusing case, 

the ratio of the hydraulic to the solute aperture is given by (2.49) from which 

the value of the variance of lnb can be calculated. These values are shown in 

Table 1 and are in the range of 3 to 6. Also, the dispersivity predicted by the 

stochastic theory (2.48) can then be used along with the calculated value of the 

variance of the logaperture to estimate the a value for correlation scale >.. 

These calculated values of the correlation scale are also shown in Table 1. 

These results indicate that the correlation scale is on the order of a meter or 

somewhat less. Values in this range are plausible and are consistent with the 

flow variations observed in the Stripa single fracture experiment (Abelin et al 

(1985)). Note that in the case of the Stripa site the calculated correlation scale 

is roughly one meter, whereas the overall scale experiment is only 4 meters. 

Under these conditions one cannot expect that the dispersivity has reached an 

asymptotic value and significant variations around the ensemble mean 

concentration would also be anticipated. In the other cases the correlation scale 

is at least an order of magnitude smaller than the displacement distance, so that 

the asymptopic ensemble mean theory should be a reasonable approximation. 

These calculations show that the stochastic theory can provide a consistent 

explanation of the dispersion process and of the difference between the solute 

and hydraulic apertures in a single fracture. These results, of course, do not 

prove that the proposed mechanism actually describes the dominant aspects of the 

fracture transport process. However, the results are encouraging enough to suggest 

that the theory should be evaluated more thoroughly through carefully designed 

experiments as discussed in Section 2.6. 

3.4 Role of matrix diffusion 

Matrix diffusion effects were not considered in any of the analyses summarized 

in Table 1. Based on a brief review of available laboratory and field information 

on matrix diffusion, it is felt that there is no definitive evidence that matrix 

diffusion is of any significance at the time scale of these tracer experiments. 

Furthermore, only the early rising limb of the breakthrough curves was analyzed, 



42 

this being the portion which is least affected by matrix diffusion. Of course, 

there is no question that the process of diffusion in a porous matrix exists. The 

key question is rather the magnitude of the effective diffusion coefficients under 

natural subsurface conditions. The extensive laboratory experiments reported by 

Skagius (1986) show a high degree of variability in the diffusion coefficient and 

significant effects of changes in mechanical stress. The field observations on an 

excavated fracture at Stripa (Abelin et al (1985)) also show extreme variability of 

apparent migration into the surface of the fracture. However, these field 

experiments are not definitive with regard to matrix diffusion because of the 

surface roughness of the natural fracture which makes it difficult to distinguish 

between surface sorption and migration into the rock matrix via diffusion. If 

depth profiling had been done for nonsorbing species, it may have been possible 

to resolve this question more definitely. 

The field experiments of Birgersson and Neretnieks (1982, 1983) are often cited 

as evidence of matrix diffusion in the field. Of course, these experiments did 

not involve a natural fracture under natural flow conditions. This borehole test 

was done with the substantial overpressure which produced significant advection of 

solute into the rock matrix. This advection effect was considered in the analysis 

of the data, but the mechanical dispersion that would be produced by such a 

flow was neglected. Some rough calculations of the mechanical dispersion effect 

in this experiment indicate that much of the observed spreading could be 

explained as mechanical dispersion rather than diffusion. 

Then, of course, there are the numerous tracer tests that have been analyzed by 

fitting matrix diffusion models to represent the extended tails frequently observed 

with radial convergent tests. It is more likely that these tailing effects are 

produced as a result of complicated mixing processes in the injection or pumping 

boreholes, or because the dispersion process has not developed to its asymptotic 

limit. Welty and Gelhar (1986) have developed solutions which demonstrate the 

strong effect of borehole flushing and placement -dependent dispersion in the 

radial convergent configuration. Several radial convergent tracer tests were 

reinterpreted in that report. Even in high porosity granular porous media where 

matrix diffusion would not be as significant, very extensive tailing is commonly 

observed. 

It is safe to say that the role of matrix diffusion under actual field conditions 

in fractured crystalline rock remains unresolved. The stochastic theory developed 

in Chapter 2 does provide a systematic framework for looking at the interaction 
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between the channeling process associated with the variable aperture fracture and 

the matrix diffusion process. The results developed there (Figure 4) suggest that 

matrix diffusion can have significant effects at large times. The resulting 

increased dispersion may negate some of the retardation effects of matrix 

diffusion and lead to an earlier arrival of contaminants at a point of discharge. 

In any case there is clearly a need for carefully designed field experiments 

which can definitively evaluate the significance of matrix diffusion. 

3.5 Potential applications of three-dimensional stochastic theory 

The theoretical approach developed in Chapter 2 emphasizes the behavior of a 

single fracture, and therefore is applicable at relatively small scales, say at most 

tens of meters. The approach might also be applicable to large-scale fracture 

zones in otherwise sound rock. However, for extensively fractured systems it 

seems that a three-dimensional treatment will be necessary in order to describe 

the large-scale behavior on scales of hundreds or thousands of meters. The 

continuum stochastic theory developed by Gelhar and Axness (1983) can in 
principle describe the dispersion process in heterogeneous, statistically anisotropic 

porous medium continuum. In view of the very extensive fracturing that seems to 

be observed in the rocks in Sweden, it may be possible to use a theory of this 

type to treat the large-scale transport process in these fractured rocks. In fact, 

data from large-scale tracer tests in porous and fractured media (Gelhar et al 
(1985)) do not show any significant difference between dispersivities in porous 

media and dispersivity at the same scale in fractured media. This information is 

summarized graphically in Figure 8. What is required in order to apply the 

theory of Gelhar and Axness is measurements of the variability of hydraulic 

conductivity in three dimensions. These data are then used to estimate the 

three-dimensional covariance function of log hydraulic conductivity which is 

required to predict the macrodispersivity tensor. The variation in hydraulic 

conductivity can be determined from short interval packer tests in boreholes. 

Winter et al (1985) have discussed the application of this approach to fractured 

rock at the Oracle site in Arizona, although they considered only the isotropic 

case. 

Large-scale hydraulic testing can also be used to infer some of the parameters 

required for three-dimensional stochastic theory because the large-scale hydraulic 

anisotropy is dependent on the statistical anisotropy of the log hydraulic 
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conductivity covariance function. This approach has been persued by Huf schmied 

(1985) for a gravel aquifer in Switzerland. 

The Finnsjon site ( Carlsson et al (1983), Ahlborn et al (1986)) would seem to 

be a good prospect for application of the three -dimensional stochastic transport 

theory. There are number of existing boreholes at that site which could be 

tested and used for large-scale hydraulic tests. The angled boreholes have the 

unique advantage that they make it possible to determine the three -dimensional 

anisotropy of the Jog hydraulic conductivity covariance function. Packer spacings 

as small as possible, say down to a meter, would be required in order to 

resolve the correlation scales anticipated in the covariance function. Around a 

hundred sampling points would be required in each borehole to develop a 

satisfactory estimate of the covariance function. The large-scale hydraulic tests 

could be designed and interpreted following the approach of Hsieh et al (1983) 

to determine the three-dimensional hydraulic anisotropy. This same kind of 

large-scale hydraulic testing configuration could be used to develop large-scale 

tracer tests for the site which could then form the basis for an evaulation of 

the prediction from the three - dimensional stochastic theory. 

In order to treat the case of sorbing and diffusing solute it will be necessary to 

generalize the three - dimensional stochastic theory to include a source - sink term 

associated with the sorbing or diffusing surface area per unit volume in the 

fracture medium. 

3.6 Recommendations for field experiments 

Experiments at several scales will be required in order to resolve the nature of 

the transport process in fractured rocks. The theory developed in Chapter 2 

provides a specific predictive hypothesis which can be tested in small-scale field 

experiments on individual fractures. Within a single fracture measurements of the 

local variation of hydraulic properties of the fracture could be made using small 

scale packer tests, as proposed by Neretnieks (1986) for the Stripa phase III 

investigations. Observations of the variation in fracture aperture would also be 

needed in order to apply the stochastic theory, and if sorption and diffusion are 

considered, measurements of the spatial variability of these properties on the 

surface of the fracture would also be needed. Covariance or variogram analysis 

can then be applied to the spatial data to estimate the pertinent covariance 

scales and develop an independent prediction of the transport properties. 
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In view of the consistently troublesome behavior of the convergent radial flow 

tracer test, especially in low porosity rocks, it is strongly recommened that the 

two-well doublet configuration with a pulse input of tracer also be considered 

for tracer tests. It is my experience that this test is much less sensitive to 

borehole storage and mixing effects than the radial convergent test which in 

some way depends on ambient flow to remove the tracer from the injection 

borehole. The experience with the doublet test has been quite favourable in that 

it lends itself to simple interpretation with a minimum number of adjustable 

parameters, as discussed with reference to Chalk River site in Section 3.3. A 

type curve for the doublet configuration with nonreactive solute is shown in 

Figure 9. From this figure it can be seen that dispersion has a strong influence 

on the rising and peak pan of the breakthrough curve, but that the tail is 

essentially determined by the large -scale advection pattern of the doublet. 

Therefore the characteristics of the matrix diffusion model as discussed in Section 

2.5 suggest that the doublet test can be used to advantage to look for the 

effects of matrix diffusion. The short direct flow paths which affect the 

dispersion process will not be influenced by matrix diffusion but, considering that 

there is a time-varying retardation effect associated with matrix diffusion, one 

would expect that the shape of the advection-determined tail of the 

breakthrough curves would be significantly affected. In a sense the wide variation 

in travel time which is associated with the doublet configuration could be used 

to advantage to try to sense matrix diffusion effects. Of course, efforts to use 

tracers with significantly different molecular diffusion coefficients should also be 

continued. 

Large - scale hydraulic and tracer tests are also suggested along the lines of the 

discussion in the previous section. In spite of what calculations from matrix 

diffusion models might suggest, I believe it is feasible to carry out a tracer test 

in fractured crystalline rock over scales of several hundred meters, especially 

since this has been done at the Savannah River site for a doublet-type test 

with a well spacing of over 500 meters (Webster et al (1970)). If clearly defined 

fracture zones can be identified from hydraulic testing, a two-dimensional 

doublet configuration would be appropriate. If the hydraulic behaviour seems to 

be fully three-dimensional, it may be necessary to deveJop a three-dimensional 

doublet test and type curves similar to those in Figure 9 for that situation. Of 

course, here I am suggesting borehole testing from the surface. Finnsjon site 

seem to be a good prospect for this kind of investigation. 
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At intermediate scales, say of the order of a hundred meters, a three­

dimensional doublet configuration may be useful for tracer tests executed from 

lx>reholes drilled outward from a mine drift at Stripa. In this way one could get 

away from the flow influence of the mine. Using severai holes at different 

angles, it should be possible to investigate the dependence of the large-scale 

transport properties on the scale of the experiment. 
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

Important overall conclusions which have evolved from this work include: 

1) The stochastic theory for flow in a single variable aperture fracture provides 

a unified description of the key transport features of a natural heterogeneous 

fracture, i.e., the channeling effect as reflected in the difference between the 

solute-based and hydraulically-based apertures, and the macrodispersion produced 

as a result of the spatially-variable velocity field in fractures. 

2) The stochastic theory predicts that the surface sorption and matrix diffusion 

can have a significant effect on the macrodisperison process in a single fracture, 

increasing the dispersivity for sorbed or diffusing solutes as much as an order of 

magnitude over those for nonsorbing, nondiffusing solutes. 

3) A reexamination of the results of tracer tests on individual fractures at four 

different sites shows features which are consistent with the predictions of the 

stochastic theory. Correlation scales for the logaperture variation are calculated to 

be on the order of a meter. 

4.2 Recommendations 

Based on results and experience from this study, it is suggested that the 

following be investigated in future work: 

1) The stochastic theory developed here involves a number of simplifying 

assumptions and approximations which need to be evaluated. These points are 

discussed in detail in Section 2.6, but, of particular concern is the small 

perturbation approximation which is used in developing the analytical solution. 

Carefully designed numerical experimentation is required to evaluate the 

importance of that approximation. 

2) The stochastic theory should be extended to more general situations involving 

variable matrix diffusion, statistical anisotropy of aperture variability and transverse 

dispersion. 
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3) The stochastic theories described in this report provide a specific framework 

for predicting large -scale transport properties of fractured rocks. The theory has 

the feature that it can use small -scale measurements of the heterogeneity of 

various parameters in order to predict the large-scale behavior. In this sense the 

stochastic theory provides a hypothesis which can be subjected to independent 

field evaluation. A number of field experiments along these lines have been 

suggested in detail in Section 3. 7. These should include experiments at a small 

scale, on the order of ten meters, focusing on individual fracture behavior, as 

well as very large scale experiments up to a kilometer in extent which can be 

related to continuum stochastic theories. 

4) This final recommendation has more to do with the administrative aspects of 

large field testing programs of the type that have been going on in Sweden. 

These are scientifically unique and significant experiments, but my experience has 

been that the documentation of the experimental work is in many cases not 

adequate. The data are often presented in an incomplete form which emphasizes 

only that information needed for the interpretations presented in that report. 

Because of the inadequate documentation much of the scientific value of these 

unique experiments may be lost. I therefore strongly recommend that strict 

standards be established for documentation of field experiments, and that financial 

resources be made available for preparation of proper documentation. Anonymous 

peer reviewing may also be appropriate for the reports. Basic data reports which 

are separate from interpretation and analysis may also be appropriate. Some very 

unique, complicated and expensive experiments have been proposed for crystalline 

rock in Sweden. In order to obtain optimal scientific benefit from these unique 

experiments I feel it would be wise to establish a formal review process with 

outside independent experts who will review and comment on proposed 

experimental designs. 
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