

Description of geological data in SKB Database GEOTAB Version 2

Stefan Sehlstedt, Tomas Stark SGAB, Luleå

January 1991

SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO

BOX 5864 S-102 48 STOCKHOLM

TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 DESCRIPTION OF GEOLOGICAL DATA IN SKB'S DATABASE GEOTAB VERSION 2

Stefan Sehlstedt, Tomas Stark

SGAB, Luleå

January 1991

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB.

REPORT ID-no: IRAP 90085 Date: 1991-01-24

DESCRIPTION OF GEOLOGICAL DATA

IN SKB'S DATABASE GEOTAB

VERSION 2

Stefan Sehlstedt Tomas Stark

SGAB, Luleå January 1991

TABLE OF CONTENTS

PREFACE		•	•	•	i
1	INTRODUCTION	•	•	•	1
2	SURFACE FRACTURES	•	•	•	3
2.1	SURFACE FRACTURES COLLECTED BY SGAB	•	•	•	3
2.1.1	Acquisition of surface fracture data	•	•	•	3
2.1.2	Processing of surface fracture data	•	•	•	6
2.1.3	Evaluation of surface fracture data	•	•	•	6
2.1.4	Surface fracture data in GEOTAB	•	•	•	7
2.2	SURFACE FRACTURES COLLECTED BY VIAK	•	•	•	11
2.2.1	Acquisition of surface fracture data	•	•	•	11
2.2.2	Processing of surface fracture data	•	•	•	11
2.2.3	Evaluation of surface fracture data	•	•	•	12
2.2.4	Surface fracture data in GEOTAB	•	•	•	12
3	CORE MAPPING	•	•	•	15
3.1	ACQUISITION OF CORE MAPPING DATA .	•	•	•	15
3.1.1	<u>History</u>	•	•	•	15
3.1.2	Data acquisition on forms	•	•	•	15
3.1.3	Data acquisition with the Core Mapping System	•	•	•	15
3.2	PRESENTATION OF CORE MAPPING DATA .	•	•	•	19
3.2.1	Potting of core log	•	•	•	19
3.2.2	Plotting of fracture frequency	•	•	•	19
3.2.3	Listing of rock zones	•	•	•	19
3.3	PROCESSING OF CORE MAPPING DATA	•	•	•	19
3.3.1	Calculation	•	•	•	19
3.4	EVALUATION OF CORE MAPPING DATA	•	•	•	20
3.5	CORE MAPPING DATA IN GEOTAB	•	•	•	20

.

4	<u>CORE MAPPING 1988-</u>	•	•	•	23
4.1	ACQUISITION OF CORE MAPPING DATA .	•	•	•	23
4.1.1	<u>History</u>	•	•	•	23
4.1.2	Data acquisition with the Petro Core Mapping System	•	•	•	23
4.1.3	Core mapping	•	•	•	23
4.2	PRESENTATION OF CORE MAPPING DATA .	•	•	•	24
4.2.1	Multicolour plotting	•	•	•	24
4.2.2	Listings and printer output	•	•	•	24
4.2.3	Stereographic projections	•	•	•	24
4.3	PROCESSING OF CORE MAPPING DATA	•	•	•	25
4.3.1	Calculation	•	•	•	25
4.4	CORE MAPPING DATA IN GEOTAB	•	•	•	27
5	CHEMICAL ANALYSES	•	•	•	29
5.1	ACQUISITION OF CHEMICAL ANALYSES DATA	•	•	•	29
5.2	PROCESSING OF CHEMICAL ANALYSES DATA		•	•	30
5.3	EVALUATION OF CHEMICAL ANALYSES DATA	•	•	•	30
5.4	CHEMICAL ANALYSES DATA IN GEOTAB .	•	•	•	30
6	ACKNOWLEDGEMENTS	•	•	•	32
REFERENCI	ES	•	•	•	33
APPENDIC	IS	•	•	•	34

INTRODUCTION

1

Since 1977 the Swedish Nuclear Fuel and Waste Management Co, SKB, has been performing a research and development programme for final disposal of spent nuclear fuel. The purpose of the programme is to aquire knowledge and data of radioactive waste. Measurements for the characterisation of geological, geophysical, hydrogeological and hydrochemical conditions are performed in specific site investigations as well as for geoscientific projects.

Large data volumes have been produced since the start of the programme, both raw data and results. During the years these data were stored in various formats by the different institutions and companies that performed the investigations. It was therefore decided that all data from the research and development programme should be gathered in a database. The database, called GEOTAB, is a relational database. It is based on a concept from Mimer Information Systems, and have been further developed by Ergodata. The hardware is a Vax 750 computer located at KRAB (Kraftverksbolagens Redovisningsavdelning AB) in Stockholm.

The database comprises six main groups of data volumes. These are:

- Background information
- Geological data
- Geophysical data
- Hydrogeological and meteorological data
- Hydrochemical data
- Tracer tests

In the database, background information from the investigations and results are stored on-line on the VAX 750, while raw data are either stored on-line or on magnetic tapes.

This report deals with geological data and describes the dataflow from the measurements at the sites to the result tables in the database. All of the geological investigations were carried out by the Swedish Geological Survey, before 820701, and by Swedish Geological Co, SGAB, after that date.

The geological investigations have been divided into three categories, and each category is stored separately in the database. They are:

- Surface Fractures
- Core Mapping
- Chemical Analyses

At SGU/SGAB the geological data were stored on-line on a PRIME 750 mini computer, on microcomputer floppy disks or in filed paper protocols. During 1987 the data files were transferred from SGAB to datafiles on the VAX computer. The data from the protocols were punched to data files either on the PRIME (before the transfer) or on the VAX. The flyleafs (tables containing background data) were also punched, transferred and loaded into the database.

In the following chapters the data flow of each of the three geological information categories are described separately.

2 SURFACE FRACTURES

Two different methods to collect surface fracture data has been used by SKB. In the GEOTAB database data is stored in two methods:

SFRACT (data collected by SGAB)
 OFRAC (data collected by VIAK)

Data collected by SGAB is described below.

2.1 SURFACE FRACTURES COLLECTED BY SGAB

When studying the qualities of the bedrock at the SKB study sites, information about small fractures in outcrops have been systematically collected. More than 10 sites spread all over Sweden have been investigated. Investigations done after 1981 at the study sites Fjällveden, Gideå and Kamlunge have been stored in a fracture database at the Swedish Geological Co and further processed with computer programs. For earlier study sites such as Sternö, Kynnefjäll, Finnsjön, Svartboberget, Taavinunnanen, Gunnarsdjupträsk, Kärkejaure and Vittangi, information is only available as hand-written forms.

See Figure 2.6 for a description of the surface fractures dataflow.

2.1.1 Acquisition of surface fracture data

The spatial distribution of fractures measured when performing a linesampling survey on an outcrop gives the frequency of all fractures crossing a scan-line (see Figures 2.1 and 2.2). It gives information of anomalous fracturing, but the number is often strongly biased (Tirén 1986).

The method used for representing fracture information in the SKB study site program is based on a proposal (Ahlbom 1980) using an orthogonal configuration of two sampling lines (Figure 2.3). The fracture number is here defined as the frequency of intersections between the fractures and the sampling lines irrespectively of the orientation of the fractures. This method has a relatively good reproducibility and is rather fast operating (Tirén 1986 and Ahlbom 1980).

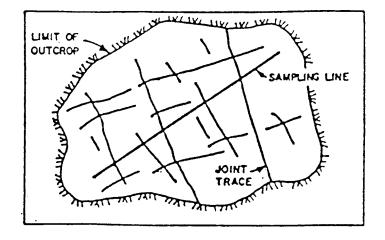


Figure 2.1 Intersections of joints with outcrop in plan view. Note that longer joint traces have a higher probability of intersecting sampling line than do shorter traces. (Beacher 1983)

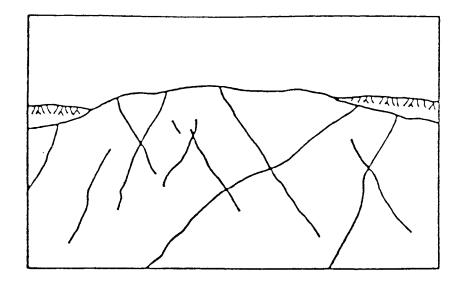


Figure 2.2 Profile view of joints intersecting an outcrop. Note that larger joints have a proportionately greater possibility of striking outcrop than do small joints. (Beacher 1983)

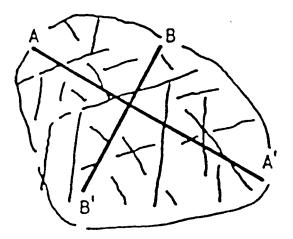


Figure 2.3. Sampling line configuration on an outcrop.

Sampled data is written on forms (see Appendices A-1 to A-5), and later punched and stored into a MIMER database on the PRIME mini computer at SGAB in Luleå.

The forms contain the following information:

Area information

- Area code
- Map sheet number
- Area name
- Y RAK coordinate
- X RAK coordinate

Measuring cross data

-	Area code
-	Cross number
-	Y RAK coordinate
-	X RAK coordinate
	Sampling line A
	 orientation
	 length (in meters)
-	Sampling line B
	- orientation
	- length (in meters)
-	Rock code (see Appendix C-2)

Fracture data

- Cross number
- Sampling line (A or B)
- Order number
- Strike
- Dip
- Number of fractures
- Type of fracture (open, sealed, closed or
- combinations of these)
- Width (in mm)
- Length (in meters)
- Character, minerals (see Appendix C-1)

<u>Structural data</u>

- Area code
- Cross number
- Order number
- Element (eq lineation, axial plane etc)
- Strike
- Dip

<u>Comments</u>

-	Area	code
	111 CU	couc

- Cross number
- Order number
- Comment text

2.1.2 Processing of surface fracture data

A fracture analysis program including features such as:

- Fracture grouping
- Fracture frequency calculation
- Gefüge diagram
- Rosette diagram
- Parameter discrimination
- Dip/fracture plot

has been used for the processing of surface fracture data. Figure 2.4 is a flow chart for the Fracture Analysis System. Figure 2.5 shows an example of rosette diagrams generated with the Fracture Analysis System.

2.1.3 Evaluation of surface fracture data

Processed surface fracture information has been used during the initial characterization of rock qualities of study site areas within the SKB study site program (eg Ahlbom et al 1980, Tirén et al 1981).

2.1.4 <u>Surface fracture data in GEOTAB</u>

Surface fracture data are stored in the following GEOTAB tables:

Flyleaf and background information

	Area information; date, mapping crew, responsible person, references
	. . .
	Comments
SFRACTF3 ACROSS	Measuring crosses; orientation and length Measuring crosses; RAK X and Y coordinates

<u>Data</u>

SFRD	Rock type
SFRDD	Fractures; profile, orientation, dip, type, width, length, characteristics
SFRND	Fractures; number of fractures, length, characteristics
SFRSD	Structural data; orientation, dip, element

<u>Lexicons</u>

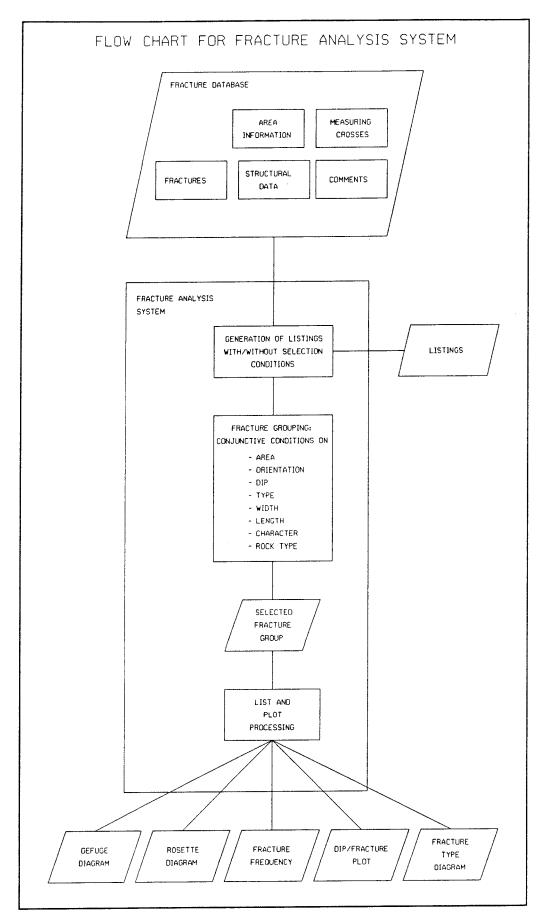
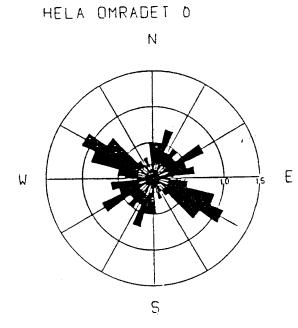
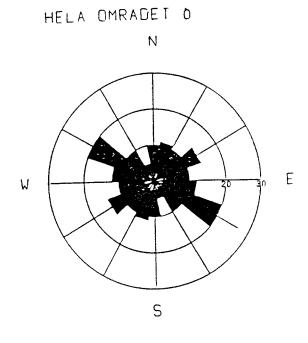
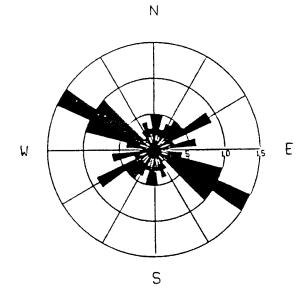
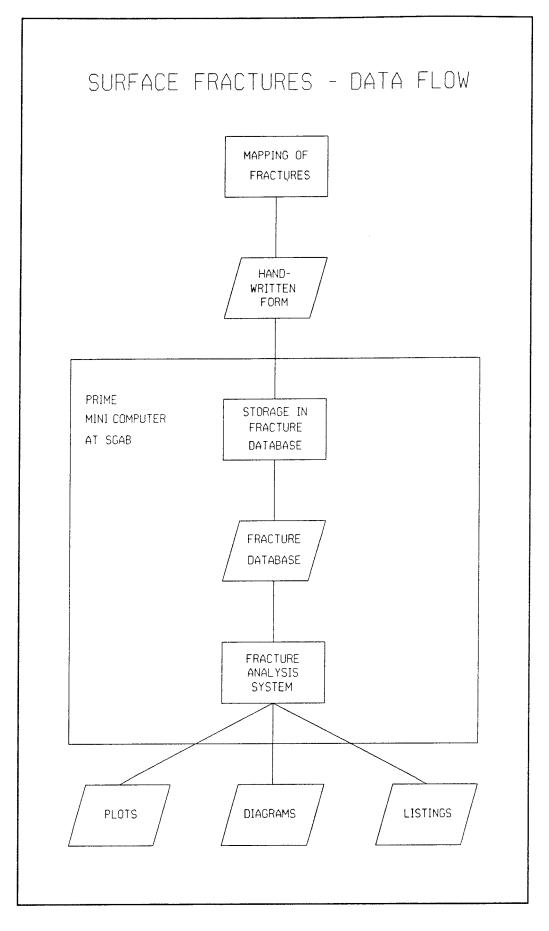





Figure 2.4 Flow chart for Fracture Analysis System


HELA OMRÅDET Ö 2-50MM

HELA OMRÅDET Ø 2-50MM N

Figure 2.5 Example of generated rosette diagrams

Figure 2.6 Surface Fractures - Data Flow

2.2 SURFACE FRACTURES COLLECTED BY VIAK

The surface fracture mapping conducted by VIAK is described below. The work is reported in SKB PR 25-87-05.

Among other preinvestigations a fracture mapping program was carried out before the establishment of the SKB Hard Rock Laboratory. The mapping was made on outcrops in the close area adjacent to Simpevarp as well as in the region between Oskarshamn and Västervik.

In Figure 2.7 the data flow of collected fractures is presented.

2.2.1 Acquisition of surface fracture data

The collection of data were carried out as a surface cell mapping. Each cell represents a circular outcrop, part of outcrop or road cut. The size of a cell was if possible chosen to give 100-150 fractures/cell. The fractures, exceeding 0.5 m in length, were measured on outcrops with areas ranging from 30 to 200 m2.

Sampled data is written on a form (see Appendix A-6) and later punched into a Lotus 1-2-3 table at VIAK in Göteborg.

The form contains the following information:

- Map code	
------------	--

-	Squ	are	number	

- Locality description
- Rocktype (dominating)
- Foliation
- Cell area (m2)
- Outcrop number
- Strike
- Dip
- Number of fractures
- Fracture fillings
- · Length (dm)
- TGF (Truncation, Movement, Foliation)
- Notes

2.2.2 Processing of surface fracture data

Collected data were processed and presented in different ways. Fractures collected from outcrops was presented as follows:

- "Fingerprint diagrams"
- Rosette diagrams

Fractures collected from road cuts were presented as follows:

- Schmidt nets

or

- Rosette diagrams
- Dip rose diagrams

2.2.3 Evaluation of surface fracture data

Evaluation of collected data was reported in the following reports:

regional data (SKB PR 25-87-05)
 data from Äspö island (SKB PR 25-88-10)

2.2.4 Surface fracture data in GEOTAB

To store the data in GEOTAB three tables was created. Efforts were made to get a data structure similar to other GEOTAB tables. To achieve this, a number of modifications of original data was made. Some of these were done by VIAK before delivery of data to SGAB:

- an areacode was added
- a fictive mapping date was added
- truncation codes for regional data and Äspö data was modified (codes used in the database is presented in Table 2.1).

Other changes was made by SGAB in dBase IV:

- TGF was splitted into three variables,
- Truncation, Movement and Foliation
- length was changed from dm to m to adapt to SI system
- mineral codes were changed to fit the codes in the Petro Core Mapping System
- rocktype codes were changed to fit the codes in the Petro Core Mapping System (in cooperation with SGU and VIAK)
- rocktype characteristics used in Petrocore were added (in co-operation with Kornfält, SGU)
- one variable, ALTER, was added for registration of oxidized fractures

The final dBase files (*.DBF) were transferred to the SKB Vax 750 and loaded into GEOTAB.

Surface fracture data are stored in the following GEOTAB tables:

Flyleaf and background information

- OFRACF1 Mapping information; areacode,outcrop number,date, mapping crew, responsible person, company, reference
- OFRACF2 Outcrop information; areacode, outcrop number, date, co-ordinates, rocktype and rocktype characteristics, area

Data

OFARCD Areacode, outcrop number, fracture number, date, fracture characteristics, orientation, dip

Lexicons

FLM FLR PCLRCOL PCLRSTR PCLRINT PCLRGRA	Rock structure lexicon (see Appendix C-7) Rock structure intensity lexicon (see Appendix C-7)
PCLRTEX	
Table 2.	1 Truncation (intersection and termination) codes for fractures
0	Not intersected by any other fracture, both terminations visible
1	Intersected by one fracture and both terminations visible
2	Intersected by two or more fractures and both termination visible
3	Not intersected by any fracture, one visible termination, the other covered by soil
4	Not intersected by any fracture. Both terminations hidden.
5	As code 3 regarding terminations but intersected by one fracture
6	As code 3 regarding terminations but intersected by two or more fractures
7	As code 4 regarding terminations but intersected by one fracture
8	As code 4 regarding terminations but intersected by two or more fractures
9	The fracture terminates in one end in another
10	fracture The fracture terminates in both ends in other
11	fractures As code 9, but the other termination is hidden
9-11:	These codes are used for outcrop numbers lower than 140. Fracture intersections are not registered.



Figure 2.7 Surface fractures (VIAK) - Data Flow

CORE MAPPING

3

Core mapping has been performed at the following study sites:

-	Finnsjön	6	boreholes
-	Gallejaur	1	borehole
	Gideå	13	boreholes
	Kamlunge	16	boreholes
-	Klipperås	14	boreholes
-	Lansjärv	1	borehole
-	Laxemar		borehole
-	Taavinunnanen	1	borehole
-	Äspö	12	boreholes
. –	Ävrö	1	borehole

The impact has been on fracture mapping, with a detailed mapping of single fractures, fracture zones and crushed zones. The rock mapping has been limited to rock type and angle to core axis.

The core mapping data flow is described in Figure 3.1.

For a sample compilation of core mapping data for the Klipperås study site see (Egerth 1986).

3.1 ACQUISITION OF CORE MAPPING DATA

3.1.1 <u>History</u>

Before 1982 core mapping was registered on forms. A handdrawn corelog was produced for presentation of the mapped information.

In the beginning of 1982 SKB decided to develop a microcomputer based Core Mapping System to:

- rationalise the core mapping process
- automatically generate plotted "core logs"
 provide for further data processing by more strict codification of data

3.1.2 Data acquisition on forms

Before autumn 1982, acquisition of core mapping data was done on paper forms (see Appendix B-1) and presented as hand-drawn "core logs" showing fractures, fracture zones, crushed zones, rock type, fracture angles, minerals etc (see Appendix B-2).

3.1.3 Data acquisition with the Core Mapping System

The Core Mapping System was developed by SGAB, and implemented on an ABC800 microcomputer with dual 5 1/4" floppy disk drives and an attached Epson MX-100 matrix printer. The software was written in ABC BASIC and built around a commercial database system called "Basregister 800 Version 1.4". The main functions of the Core Mapping System are:

- Fracture mapping
- Rock type mapping
- Plotting of "core log"
- Calculation of fracture frequencies
- Plotting of fracture frequencies
- Listing of rock zones
- Listing/editing of database records
 Miscellaneous data administrative functions, such as floppy disk formatting, backup routine etc

Version 1 of the system was used from autumn 1982. During 1985 Version 2 of the system was developed. Version 1 is completely in Swedish, whereas Version 2 is completely in English. In Version 2 some improvements were made, for example a more detailed mapping of fracture zones. The following chapters will describe Version 1 of the system, since nearly all investigated areas up to the date of this report are mapped with Version 1.

See (Stark 1983) for a user description of the Core Mapping System.

3.1.3.1 Fracture and rock type mapping

The following list comprises the main menu of the fracture and rock type mapping routine in the system:

- 1 Fractures, coated
- 2 Fracture zone
- 3 Crushed zone
- 4 Sealed fracture
- 5 Fresh fracture
- 6 Uptake
- 7 Rock type
- 8 Core loss
- 9 Notes

The user enters a depth (rounded to nearest 5 cm), and then selects the choice from the main menu, consistent with the core observation. Some menu choices have submenus, some do not. All choices will be explained in the chapters below. All menu texts have been translated into english in this report, though they are in Swedish in the Core Mapping System Version 1.

Fractures, coated

The coated fractures menu has the following contents:

Number of fractures (1-99): Angles from (0-90): to (0-90): Parallel foliation (Y/N): Mineral 1:

```
Mineral 2:
Mineral 3:
Mineral 4:
Mineral 5:
Surface (V,S,O,P,L,M,Ö):
```

The surface character codes have the following meanings:

Table 3.1. Surface character codes

Swedish code		English code
V	Weathered	W
S	Smooth	S
0	Rough	R
P	Polished	P
Ĺ	Slickenside	L
M	Coated	С
ö	Other	Х

In Version 2 the surface character codes were translated to english equivalents (see Table 3.1). These english equivalents are also used consistently in the GEOTAB database, even if data acquisition was originally performed with Version 1 of the Core Mapping System.

Mineral codes used conform to the code dictionary defined by the Swedish Geological Survey (see Appendix C-1).

Fracture zone

Begins or Stops (B/S): Coated or Fresh (C/F): Number of parallel (0-99): Angles from (0-99): to (0-99): Number of crossing (0-99): Angles from (0-90): to (0-90): Parallel foliation (Y/N): Mineral 1: Mineral 2: Mineral 3: Mineral 4: Mineral 5: Surface (V,S,O,P,L,M,Ö): Crushed zone

```
Begins or Stops (B/S):
Mineral 1:
Mineral 2:
Mineral 3:
Mineral 4:
Mineral 5:
Surface (V,S,O,P,L,M,Ö):
```

Sealed fracture

This choice has no sub-menu. The given depth will be marked to contain a sealed fracture.

Fresh fracture

This choice has no sub-menu. The given depth will be marked to contain a fresh fracture.

<u>Uptake</u>

This choice has no sub-menu. The given depth will be marked to contain a core uptake.

Rock type

Rock code: Prefix code: Angle:

Rock and prefix codes used conform to the code dictionary defined by the Swedish Geological Survey (see Appendix C-2 and C-3). The parameter "Angle" is the angle to the core axis in degrees.

Core loss

Begins or Stops (B/S):

The given begin and stop depths will be marked as core loss borders.

<u>Notes</u>

Note (max 20 chars): Should the note be printed on the core log plot (Y/N):

Notes are maximised to 20 characters and may optionally be printed at the core log plot.

3.1.3.2 Listing/editing of database records

With the database system routines in "Basregister 800", all data records stored with the Core Mapping System

may be listed and edited. Also searching for specific data may be performed, but is seldom used in practice since it is more convenient to incorporate frequent searches in specific application programs and routines (like for instance fracture frequency calculation). In general, there is also seldom much use for the editing facilities, since the Core Mapping procedure has built in data checking for inconsistencies and errors.

3.1.3.3 Miscellaneous data administrative functions

Included in the system are also routines for floppy disk formatting, backup of floppy disks and "Basregister 800" routines for "reparing" of databases that has been damaged due to floppy disk failures. Also included in the "Basregister 800" package, are routines for sorting database registers and for mathematical operations on database registers.

3.2 PRESENTATION OF CORE MAPPING DATA

3.2.1 Potting of core log

A core log plot may be produced with the system, comprising all information stored for the complete borehole core (see Appendix B-3). A description of the plot layout is also produced by the system (see Appendix B-4).

3.2.2 Plotting of fracture frequency

The calculated fracture frequencies may be plotted on an attached HP7475A pen plotter. This routine will be described in the "Data processing" chapter.

3.2.3 Listing of rock zones

A printout of rock sections may be generated with the system. This routine will be described in the "Data processing" chapter.

- 3.3 PROCESSING OF CORE MAPPING DATA
- 3.3.1 <u>Calculation</u>

3.3.1.1 Fracture frequency

A fracture frequency calculation routine is included in the Core Mapping System. The fracture frequency for coated fractures may be calculated, where selection conditions for minerals and/or angle to core interval, may be set by the user. For example, the fracture frequency for all fractures coated with the mineral calcite and with an angle to core between 30 and 60 degrees may be calculated. The section length may be chosen by the user, but is usually set to 1 meter.

Since the fractures in a fracture zone are collectively registered, the fracture frequency calculation routine will "spread" the number of fractures in the zone at equal distances, and if angle selection conditions are set, the number of fractures in the registered angle interval at equal distances.

Example:

A fracture zone between depths 53.00 m and 54.70 m is registered to contain 8 fractures in the angle interval 30-45 degrees. These 8 fractures will be placed at equal distances in the angle interval (30, 32.14, 34.29, 36.43, 38.57, 40.71, 42.86 and 45 degrees). If an angle selection condition is set to the angle interval 40-60 degrees, only 3 of the 8 fractures will be included in the fracture frequency calculation (40.71, 42.86 and 45 degrees). These 3 fractures will be spread at equal distances in the depth interval 53.00-54.70 m (53.00, 53.85 and 54.70 m).

Crushed zones will have a pre-defined fracture frequency of 50 fractures per meter.

3.4 EVALUATION OF CORE MAPPING DATA

Core mapping data have been used to evaluate:

		distribut						
-	the	location	of	fracture	zones	in	the	bedrock

- and their orientation
- the distribution of different minerals in the fracture zones and solid rock
- correlations to geophysical loggings
- alteration of fracture zones
- ground water flow
- water chemistry

By using computer based core mapping it has been possible to evaluate core mapping data in a more objective and systematic way, compared to solely manual methods.

3.5 CORE MAPPING DATA IN GEOTAB

Core mapping data are stored in the following GEOTAB tables:

Flyleaf information

CFRACTF1 Borehole information; date, mapping crew, responsible person, references CFRACTF2 Borehole comments CFRACTF3 Core mapping comments

Data

FRACTURE	Fractures; depth, angle interval, type, number of fractures
PARAFOL	Parallel foliation; depth
CRUSHZ	Crushed zones; depth
CLOSS	Core losses; depth
UPTAKE	Uptakes; depth
MINERAL	Minerals; depth, mineral code
CHARACTE	Fracture surface character; depth, character code
ROCK	Rock types; depth, prefix code, rock code, angle to core axis
Terrigona	

<u>Lexicons</u>

CMLFT	Fracture type lexicon (see Appendix C-5)
CMLC	Fracture surface character lexicon (see
	Appendix C-5)
CMLPC	Prefix code lexicon (see Appendix C-3)
FLR	Rock code lexicon (see Appendix C-2)
FLM	Mineral code lexicon (see Appendix C-1)

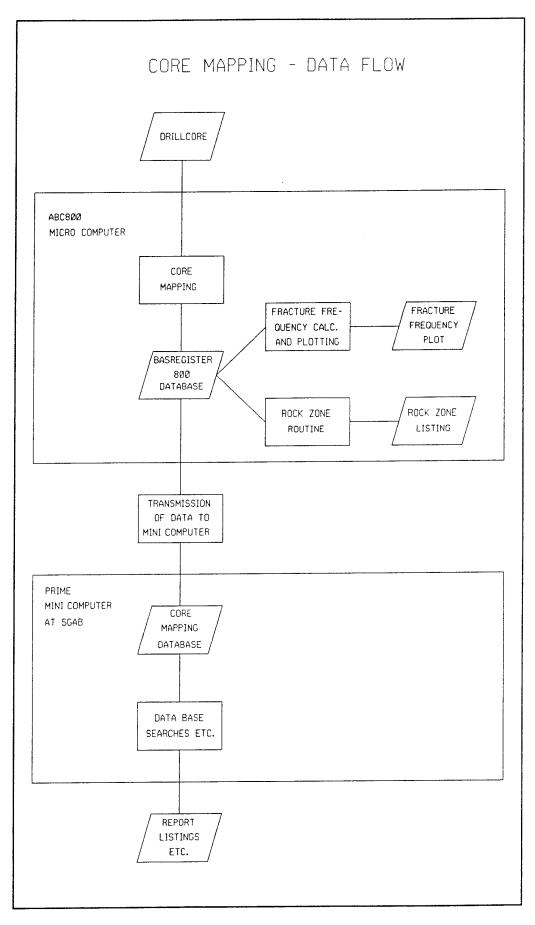


Figure 3.1 Core Mapping - Data Flow

4 CORE MAPPING 1988-

The core mapping data flow is described in Figure 4.1.

4.1 ACQUISITION OF CORE MAPPING DATA

4.1.1 <u>History</u>

The Core Mapping System on ABC 800 finally reached its limits. Since early 1988 a new PC data acquisition system have been in use.

4.1.2 Data acquisition with the Petro Core Mapping System

The Petro Core Mapping System was developed by Petro bloc AB, and implemented on a PC with 3.5" floppy disk drive and an attached HP 7475 pen plotter. The software was built around a commercial database system called "Dataflex". The main programs of the Petro Core Mapping System handle:

- Collection of data
- Presentation of data on lists or with printer graphics
- Calculation of joint frequencies and RQD
- Plotting of data on multicolour plots
- Drawing of stereographic projections of the orientation of joints in oriented cores

Version 1 of the system was used from early 1988.

See (Ludvig 1988) for a user description of the Petro Core Mapping System (version 1.11). Version 2 is now in use, but no manual is yet available.

4.1.3 Core mapping

The following list comprises the main features mapped in the system. Each number is a so called variable.

The user enters upper and lower section length, a variable number and codes consistent with the core observation. All codes will be explained in the chapters below.

4.1.3.1 Description of variables and subvariables

Each variable is described with one or several subvariables. A complete description of variables and subvariables is found in Appendix D.

Table 4.1 Variables used in Petro Core.

- 1 Break
- 2 Natural fractures
- 3 Sealed fractures
- 4 Crush zones
- 5 Rock type
- 6 Structure
- 7 Alteration
- 8 Uptake
- 9 End of orientation
- 10 Orientation of fractures
- 11 Core loss
- 12 Box
- 18 Position
- 19 Drill method
- 103 Fracture orientation

4.2 PRESENTATION OF CORE MAPPING DATA

4.2.1 <u>Multicolour plotting</u>

A plot showing the core mapping along the borehole may be generated and plotted with an attached HP7475A pen plotter (see Appendix B-7). Any section, scale and configuration of variables may be choosen for the plot.

4.2.2 Listings and printer output

Three types of reports may be generated in the system:

- List of variables (Appendix D-1)
- List of core
- Printer graphics

The lists may be directed to the attached printer and/or on a disk file.

4.2.3 <u>Stereographic projections</u>

If fractures are orientated it is possible to present these fractures in stereographic projections of different types. Both Schmidt- and Wulf-net presentations are available (Appendix B-8).

4.3 PROCESSING OF CORE MAPPING DATA

4.3.1 <u>Calculation</u>

A fracture frequency calculation routine is included in the Petro Core Mapping System. The fracture frequency for coated fractures may be calculated, where selection conditions for minerals and/or angle to core interval, may be set by the user.

- Joints/m - RQD

Crushed zones are defined by section limits and length of core pieces.

4.3 EVALUATION OF CORE MAPPING DATA

Core mapping data have been used to evaluate:

- the distribution of different rock types
- the location of fracture zones in the bedrock and their orientation
- the distribution of different minerals in the
- fracture zones and fractures
- correlations to geophysical loggings
- alteration of fracture zones
- water chemistry

By using computer based core mapping it has been possible to evaluate core mapping data in a more objective and systematic way, compared to solely manual methods.

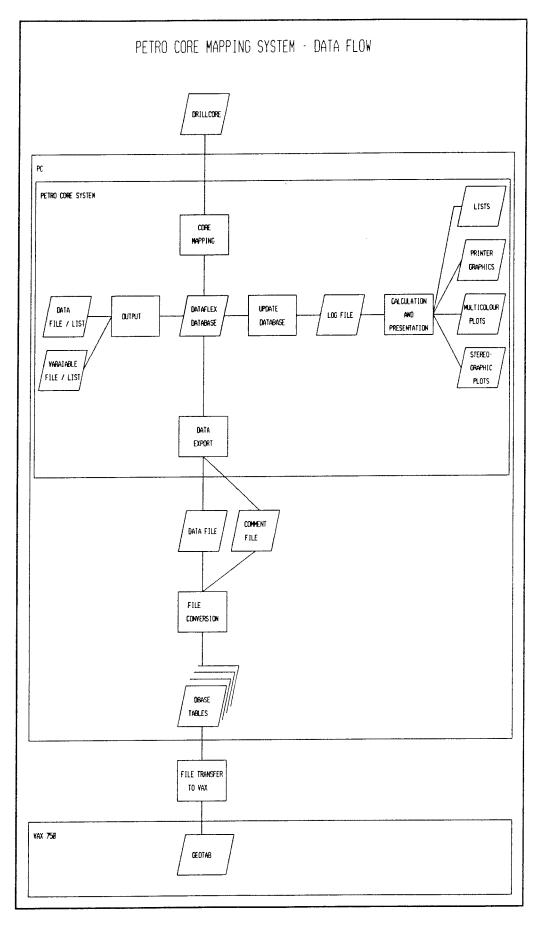


Figure 4.1 Petro Core Mapping - Data Flow

4.4 CORE MAPPING DATA IN GEOTAB

Core mapping data are stored in the following GEOTAB tables:

Flyleaf information

PCFRACF2 Borehole comments	PCFRACF1	Borehole information; date, mapping crew, responsible person, references

<u>Data</u>

ALTER	Alteration; from\to length, alteration code, intensity code
BREAK	Break; from\to length, break code
CORECOM	Core comment; from to length, comment
	Core recovery; from to length, recovery code,
COREREC	core recovery; from to fengen, recovery code,
	marked length, length difference
CORLOS	Core loss; from to length, core loss code
CRUSH	Crushed zone; from \to length, piece length
ENDORI	End of orientation; from to length, code,
	correction angle
FILL	Fracture filling; from\to length, observation
	variable
NJOINT	Natural joint; from to length, fracture width
ROCKTYPE	
ROCKITE	code, intensity code, grain size code, texture
	code
RORIANG	Orientation; from\to length, variable, alpha
	angle, beta angle, strike, dip, quality
ROUGHN	Roughness; from to length, variable, fracture
	roughness
SJOINT	Sealed joint; from\to length, fracture width
SKIN	Fracture skin; from\to length, skin code
STRFEA	Structural feature; from to length, structural
01101211	feature code, structural feature intensity
	code
SURFACE	Fracture surface; from\to length, fracture
SURFACE	surface code
VEIN	Vein; from\to length, rocktype code

<u>Lexicons</u>

PCLBREAK	Core break lexicon
PCLRCOL	Rock type colour lexicon
PCLRSTR	Rock type structure lexicon
PCLRINT	
PCLRGRA	
	Rock type texture lexicon
PCLSTRU	Rock type structure lexicon
PCLSTRIN	Rock type structure intensity lexicon
PCLALTER	
	Alteration intensity lexicon
PCLRECOV	Core recovery lexicon
PCLEO	End of orientation lexicon
PCLOF	Oriented fractures lexicon

27

PCLCL	Core loss lexicon
PCLVAR	Variable lexicon
	Fracture roughness lexicon
	Fracture surface lexicon
PCLSKIN	Fracture skin lexicon
FLR	Rock code lexicon (see Appendix C-2)
FLM	Mineral code lexicon (see Appendix C-1)

5 CHEMICAL ANALYSES

Analyses of rock and core samples have been performed to a minor extent within the SKB study site program. Analyses have been performed on samples from the Fjällveden, Gideå, Kamlunge, Klipperås, Svartboberget and Taavinunnanen study sites.

The chemical analyses data flow is described in Figure 5.1.

Petrophysical analyses of rock and core samples are described in the report "Description of geophysical data in SKB's database GEOTAB", which is being written parallel to this report.

5.1 ACQUISITION OF CHEMICAL ANALYSES DATA

Rock and core samples collected at the study sites have been sent to the laboratory at the Swedish Geological Co in Luleå, to be analyzed. Several different sample preparation, sample treatment and analyzing methods have been used, including:

Sample preparation

-	Grinding in steel mill
	Grinding in tungsten carbide mill
-	Grinding with additive in steel mill
-	Grinding with additive in tungsten carbide mill

Sample treatment

-	Grinding	isoformation	
---	----------	--------------	--

- Dissolution after melting
- Total dissolution
- Total dissolution (HF, H_2SO_4)
- Acid leaching (HNO₃, HCL)
- Gas generation
- Melting

Analyzing method

- Atomic absorption
- Atomic absorption (flame emission)
- X-ray fluorescence analysis
- Jumbo spectrophotometry
- Spectrophotometry
- Spectrometry (colorimetry)
- Electrochemistry
- Gravimetry
- Titrimetry

Analyses have been stored in a MIMER database on the PRIME mini computer at SGAB in Luleå.

5.2 PROCESSING OF CHEMICAL ANALYSES DATA

Chemical analyses data has not been further processed, only listed in reports etc.

5.3 EVALUATION OF CHEMICAL ANALYSES DATA

The analyses data has been used for rock classification where manual methods have been insufficient, or to chemically confirm manual interpretations.

5.4 CHEMICAL ANALYSES DATA IN GEOTAB

Chemical analyses data is stored in the following GEOTAB tables:

Flyleaf information

ARCHEMF	Area information; date, mapping crew,
	responsible person, references
BRCHEMF	Borehole information; date, mapping crew, responsible person, references

<u>Data</u>

ARCHEMD1	Rock	sample	analyses;	trace elements
ARCHEMD2	Rock	sample	analyses;	main elements
				oxide elements
ARCHEMD4	Rock	sample	analyses;	remaining elements
				trace elements
				main elements
				oxide elements
BRCHEMD4	Core	sample	analyses;	remaining elements

Lexicons

RCLAM	Analyzing method code lexicon (see Appendix C-6)
RCLST	Sample treatment code lexicon (see Appendix C-6)
RCLSP	Sample preparation code lexicon (see Appendix C-6)

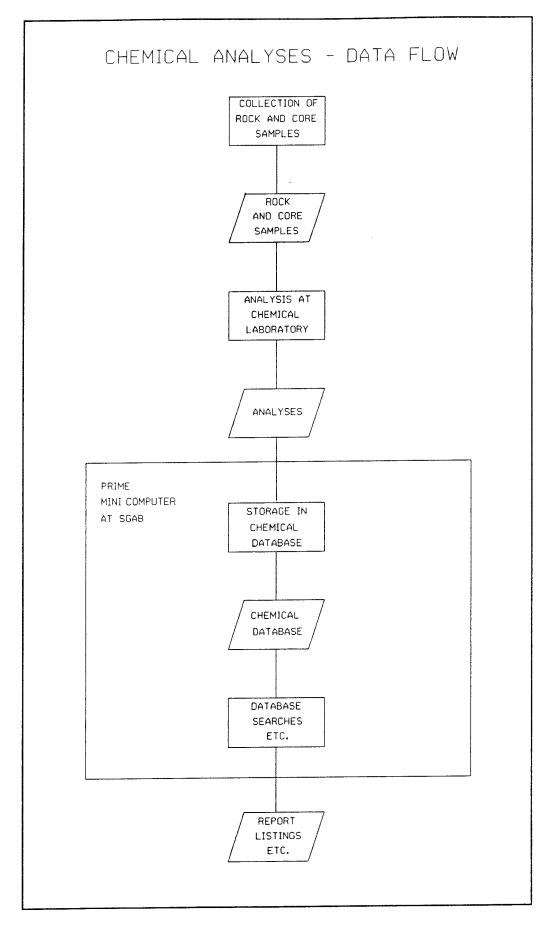


Figure 5.1 Chemical Analyses - Data Flow

ACKNOWLEDGEMENTS

Version 1

6

The author wishes to thank Bengt Gentzschein, Göran Nilsson, Stefan Sehlstedt and Sven Tirén for their help during the writing of this report.

Tomas Stark Luleå, April 1988

Version 2

The author wishes to thank Tomas Stark, Allan Stråhle and Lars O. Ericsson for their help during the revision of this report.

Stefan Sehlstedt Luleå, November 1990 REFERENCES

- Ahlbom, K., 1980: Rekognoserande sprickfrekvensmätningar utförda under hösten 1979 på områdena: Finnsjön, Sternö, Kråkemåla och Kynnefjäll. Unpublished report, Geological Survey of Sweden, Uppsala, 15 p.
- Ahlbom, K., Ahlin, S., Eriksson, L. and Samuelsson, L., 1980: Berggrundsgeologiska, tektoniska och geofysiska studier på Kynnefjäll. Programrådet för radioaktivt avfall, Stockholm, rapport Prav 4.16, 73 p.
- Beacher, G.B., 1983: Statistical analysis of rock mass fracturing. Mathematical Geology, v.15, pp. 329-348.
- Egerth, T., 1986: Compilation of geological and technical borehole data from the Klipperås study site. SKB, report 86-10, 600p.
- Ericsson, L. O., 1987: Fracture mapping on outcrops. SKB PR 25-87-05.
- Ludvig, B., 1988: Petro Core. Microcomputer system for core logging. User's manual.
- Stark, T., 1983: Användarmanual för kärnkarteringssystem. Unpublished report, Swedish Geological Co, Luleå, 29 p.
- Tirén, S.A., Eriksson, L., and Henkel, H., 1981: Berggrundsgeologiska, tektoniska och geofysiska studier av Voxnaområdet och det däri belägna typområdet Svartboberget. Programrådet för radioaktivt avfall, Stockholm, rapport Prav 4.36, 113p.
- Tirén, S.A., 1986: Fractures and fracture zones: Structural elements, their character and tectonic environment; A literature review. SKB, report 86-16, 236 p.

HUVUDDATA

PT		G	D/	7			TOP				OMRÅDETS NAMN								Y					X																							
	3										12	2					17				_													33							40	5					4
)1	B	D	A)	10	2	210	2	1	17	9	T	41	γI	V	6 6	1	D	E	=),	XT								<u> </u>						6	4	17	0	0	7	0	4	5	3	0	ĪĊ
T			Γ	T	1	0	2	210	0	2	17	9	79	1/1	11	V	G	ī	P	E		4							<u> </u>	<u> </u>	\square				6	6	3	2	5	6	7		4	5	7	5	
1	1	1,	t	\top		12		2	5	3	T	9	19	71/	νľ	V	6	T	D		12	\$†				-					<u> </u>			7	6	6	3	3	0		17	0	4	55	$\frac{1}{1}$	0	Č
1		\mathbf{T}	T	1-	1-	C		2	2	4	17	9	10	77	v	v	6	1	D	E		针								<u> </u>	<u> </u>			$\dot{7}$	6	6		0	0	0	17		4	4	5	0	
1-	-	\vdash	┢	╋	1	ĬČ			5	5	ĥ	ģ	9		ili	Ż	G G	1	D			打						-			\vdash			1	6	6	$\dot{\overline{y}}$	3	5			Ŕ		5			
-1		1-		+-	1	C				6	片	9	19	_		2	Ğ	u	L		-		2	P	R	F	R	G	F	T		-				6	4	5	0	ŏ	17	0	4	3	8	3 0	
-1		-		┢	+	Č			5	7		9	p		νı	7	F	Ā	6	F	Ť,	e i	M	$\tilde{\mathbf{v}}$	$\frac{D}{R}$	R	E	0	6	P	T					Ŝ	3	5	0	0	7		4	6	0 7	5	
-1	-	┢	┢	+	+-	0		$\frac{2}{2}$	5	8		9	19				Ś	j	0	E		Ì.		ŕ	R	E B E	D	2	E G E	E T	μ_					5	9	5 0 3	0	0	$\frac{1}{7}$			·	++		
-1-		┝	┢	+	+	Q			5	9			d		꿌	X		<u>J</u> 1	L		十	$^{+}$		-		N		2	¢	Ľ							7	0	2	5				4	3	0	1
-1		+	-	+	+	5			_	4		9	10	5	<u>+</u>		7			A		+	T	2	<u> </u>	R	~		+									4	5	0		0	4				0
	┨──			+-	+-	μ	-là	4	4	Q_	μ_	μ.	╀╴	Ŧ	4	-	-	<u>o</u>	<u> </u>	14	₽	+	4	0	E	R	G	٤	_				_	4	6	6	1	0	2	0	11	0	4	0	2	0	 C
	ļ	ļ	Ļ	_		+-	+-	╇	-						_						- -	4												_	_	_				ļ			-	L			
	_		_		1_	\bot		_	_						_		_		L	 	1	_	_		_									_						<u>i</u>		1					L
									_			L																															İ				
				Ľ																_												÷										<u> </u>		1	Π		Г
			Γ		Τ	Τ			7					T								Γ	T																			1					ſ
	-			1	1	1			1			1	1								T	1				_									-					1-	 						t
					+-	+	╈	╈	+			┢	+	+	+	-†	-			1-	╈	+	+											-+	-+	_							\vdash				┝
-		-	┢─	<u> </u>	╋	╋	┿		-	-			┝	┿	╋	-	-				╋	┿	+											+	-	-		-			<u> </u>	┝╾┥			┝━┥		÷
-1				┢──	+	┨─╴	+	+	+	-				╋	╉	-	-+				-	╈	+						-	-				-+-	-+							┟──┤			\vdash		
		_			+	┢	+	+-	+	-		-	╂	┿	╋	-	-+				┢	+	+	-		_				_				-+-									h		┝━┥		Ļ
		L	-	┣-	┢	_	+-	+-	+				–	+	+	+	+	-		ļ	+-	+	+												-+-	-	-				 				┝──┦		⊢
	-	_	_	ļ	 			+-	+	-		ļ	_	+-	+-	_	-+						+	_	_	_			_								<u> </u>				<u> </u>				<u> </u>		
	_	_			 		<u> </u>	4	_	_			ļ	4_	4	_	-	_		_	1_	4-	+	4	_	_	_				<u> </u>		_	_	_	_						\square		i			
		_		L	L		ļ	1	1	_			ļ	1_	4	_	\downarrow				1_	4-	_	-	_	_			_	_				_		_	_	_							 	;	
							L						L	1_		_		_			L	1		_		_								_						Ĺ							
																																											Ĩ	i		ţ	1
					Γ	Γ	Γ	Τ	T					Τ	Τ	Τ			_		Γ	Τ	T	T	Τ	Τ	T	T	Τ	T		Τ	T	Τ	T	1										1	1
	-				1-	1-	\uparrow	1-	+	-			1	\uparrow	┢	1	-†				1	1	1	1												-	-1					 					
					1	<u> </u>	†	-+	+	-			<u> </u>	1	+-	-	-				!	\uparrow	+	+	-1	-1		-1	-		-+			-+-	-†	-+	-+		<u>ا</u> ۔۔۔۔ ا			1	ļ	!			· · · · · · · · ·
						-	ـــــــــــــــــــــــــــــــــــــ	╋	╉	+	-			1-		+	-	-+			1	+	╉	+			-		-	-			-+-		-+		-+							1	-+		
		-	-		-	 	+	+	╉	-				+-		-		-+				+	+	-+	+	-	-		-+		-+			-+	÷	-+	+						I	1			
					<u> </u>	–	+	+-	+-				<u> </u>		+-	-+-	-+-				 	+	+	-+-				+	-+				-ŀ	<u>-</u>			-+-	+	-+			<u>م مى</u> غ				h	

APPENDIX A-1

Surface

fracture

form

1

Area

information

34 34

MÄTKORSDATA

·	· · · · · · · · · · · · · · · · · · ·		110000	······	·····	PRC	DFIL A	PRO	FIL B	
РТ	GDA	OMR NR	KORS NR	Y - KOORD	X-KOORD		LÄNGD			REDO ADT
1	3	7	12	16	23	30	34			BERGART
02	BDAD	201			7045320	N 271		39	43	48 54
		201	2	1664005	7045265	11 3 7 W	15.0	N60E	9.5	MHA
	<u>┤</u> ╶┤╼ <u>┨</u> ╼┼╼┼	201	3		The second se	N78W	13.0	N25E	11.5	MHA
	┼╍┼╍ႃ┦╌┼╼┼			1664130		N08E	14.0	N 52 W	10.0	MHA
- 	╎ ╍┥╌╴ ╏╶ ╍┥╼╾┟	201	4	1664135	7045305	N90W	20.3	NOGW		MHA
 	┞╍┼╌┨╼┼╼╀	201	5	1664155	7045370	NHZE	.24.5	N 3 3 W	12.0	MHA
		202		1663335		NZZE	15.0	N 6 2 W	ويتحدث والمستعد والمراجب والمستعد والمستعد	MHA
	╎──╎──╏──┤──┤	202	2	1663225	7046825	N 50 E		N 34 W		MHA
		802	3	1663180	7046895	NBOE		N2OW	the second s	MHA
		202	4	1663215		NGOC		N32W		MHA
		202	5	1663240	7046635	NZGE	18.0	NGSW		
		203	1	1663330	7044935	NGBE		NZZW	9.6	MHA
		203		1663355		NZSE	18.6	NGZW		MHA
		803	3		7045105	NHSC		ALE QUI	12.5	МНА
		203	4	1663280		NJOW	19.5	N52W	15.81	
		203	5	1663240		N76E		NBQE	10.01	MHA, HSB
		204		663785				NZZWI		ЧНА
	── ┼──┠ ━┼──┼─	204	2	1663720			12.7	NSBE		YHA
┝╼╉╼┼	╼┼╾┨╍┼╍┼	204	3	1664015			17.4	N8SE	8.51	MHA, MHB
	╼┼╌╏┈┼╼┼╸			······································		N 62 W		NYSE	24.61	MHA
┝╼╂╾┽	┉┼╍╌┨╌╌┼╌╌┼╌			1664060		NIQE		NSOW	14.81	MHA
┝╼┠╼┼	━┼╌┨╌┼╌┼╴	204	5	1664200		MOYW	83.2	N88E	13-21	1HA
┝╼┛╼┿	╍┼╌┠╌┼╼┼╴	205		1664395	7044800	NEDE		V-15W	3. 6.	THA .
		205	2	1664340	7044860	N 8 5 W	13.4	NOEW	11.51	4HA
		205	3	1664390	7045010	MIHE	17.4	N 8 5 W		YHZ I
		205	· 4	1664335	7045060	U 2 W	16.61	V72W		VHA
	· .	205	5	1664290	7045075	NYGE		V 4 5 W	9.51	MHA.
		206		1664500	7043920	NIHW	12.4	V78E	9.61	VIEZ I
		206	2	1664460		VIQE	46.4	NJAW		MHA
		206	3		7043800			VBOE		
		206	4	1664980			21-41			
		206	5			162E V90E		VIQE		
		207		┶╍╪╍╍╍┼╍┉╍┽┉┺┈╼╴╼╼╪┉╶╴╺╴╼┉╂┉	┉╞╼┉╞╍┅╼┠┈╍╂┈╴╡┈╴┥	NHGV	32.51	J47E		HA
here 77					101760701	V 7 6 V	1341.131/	VIHIFICI	1114 151	AHA !!

APPENDIX A-2

.

Surface fracture form ł Measuring cross data

а 5

			P R	٦	SP	RICK	DATA			
РТ	GDA_	OMR NR	KORS C NR F		STRY	STUP	ANT TYP	BREDD (imm)	LÄNGD (im)	KARAKTÄR
1	3	7	12 16	6 17	21	25	29 32	35	39	43
03	BDAD	201	1 / A	4 7	N 2 6 E N 6 9 W	805	1/0	17		
				2	N69W		2 L	7	1.5	02
				3	N73W		12 1	1	1.0	07
				4	N 6 8 W	70S	1/S	0		
				5	N 56 W	405	10	2	- O	
				6	N 5 4 E	90			Ŏ	
		·		7	NQOE		/ <u>/</u> / / / /	1	Ď	
				8	N 20 E N 56 E	80 N	12	5		QZ,FSP
	·			9	EW	70 N	1 L 1 Ö	5	Ŏ	
					NIQE	90	15-0		- ŏ	
						90	15-0 15-0	0	00	
-1-			╏━┼━┼─┼─┼╱	12	N 35 E	70 S	10		Ŏ	
			╏━┥╼┤╾┼╾┠╍	/3	EW	85 N	/ <u>5</u> – Ö	. 4	2.0	╎╍╍╄╍╍┞╌┞╍┫╼╸┠╴┨╍╍┟╴╽╴╴╴╸
				14	N55E	855	25-0	0		┟ <mark>┉╂╌┠┉┠┈┼╶┦╍╊╍┼╌┞╴┦┑┥╶┼╸</mark> ╴╸╴
			╏╼┼╼┼╼┼╼┼		N45E		15		1.0	┍━╊╌╄╼╄╼╄╼╄╼╄╶╋╸╄╧╄╴╞╾┊╾┝╸┄╴
	┝╼╾┝╍╌┨╼╴┼╍╌┤		┠━╍┠╍╶┠╌╴┠╼╴	16	N 38 E	20 N	/ <u>0</u>		0	┟━╉╌┞╌┠╌┠╌┠╸┟╶╏╌╏╶╹┥╸╎╴╸╴╴
			┝╾┼╾┼╾┼╌┼╌		M67E	855	15-0		1.5	┟╍╄╍╃╍╕┨╍╍┠┅┟╍┟╍┍┠╍┥┥┥┥╸┊╸╴┊╸
			┝╾┼╾┼╶┼─┼			605	1 <u>3</u> 0	- 4		
	┝╍╍┼╍╌╏╼╍┼╼╍┤		┝╾╀╼╌┽╼╌╂╼╸		NGZW	80N			1.5	┝━┥╾╀╾┞╌┞╼┥╌┞╶┥╶┥╴╷╴
	┝╍┼╾╏╼┾╾┤			20	N52E	90			1.0	
	┝╼╍┼╼╍╏	╾╋╾┞╾┞╌╢	┝━╄╼╉╼╂╼╊╼	21	N72E	855	2 S 1 s - ö		0.7	──┼╍┼╍┼╍┼╸┼╸╎╸
	┝╼┼╍┠╼┼╼┤	╾┼╌┼╌┼╌┨	┝╼┼╾┼╼╂╼	22	N 58E	8 3 3 8 0 N	1 s - 0 2 s - 0 1 s - 0		0.5	
	┝╾┼╾┨╼┽╼┦	<u></u>	┝╾┼╾┼╾╂╼╀╼		N70E	75 S	<u> </u>	- <u> - - </u> K		
	┝╍╌┠╾╌┠		┝╾┼╼┼╼┼╌┨─╴		NTOE	728			$0 \cdot 5$	
	┝╾┼╾╏╾┼╾╽		┝╍┽╼┞╼┼╾╂╾		M32E		/			QZ-FSP
			┝━╧┞╍╌┠╼═┠╌╼┠╌╍	· 25	N 32E	<u>10</u>	10 ×	3	0	
_				26		70 S	15-0	- O	0	
				97		85N	13-0	0	1 - 2	
				28	N76W	90	10	/	0	
				29		90	/ Ö	3	0	
				30		90	IHLL	0	0	
		201	1 B	3 1	N4QW	605	10		0	
T		- - - - -		1	11256	9/11	11011			

APPENDIX A-3

36

Surface fracture form - Fracture data

												_																						
		14						Γ	Τ		Γ	Τ	Τ	Τ	Т	Т	Τ	Τ	Τ		T	Τ	Τ	Τ		Ι			T	Τ	Γ			
]_	Τ	ŀ		Τ	Т		7-	1-	T	7-	7-	1-	1	1	1	1-	1	1	1	1 -	1	1		-	\Box
		19					T	Τ	Τ	Γ	Ι	Γ	Τ	1-	Τ	1	1-	T	1	1	T	1		1	1	1-	1	1	1	1-	1	1-		\square
	H	STUP					Τ	I		Γ		Γ		T	T	1-	1-	T	1		1	1	1-	1				1-	1	1	1	1		
	ORIENT			Ι	Τ			1		1	Τ	1	T	1	\top	1	1-	1	1	\uparrow	1	1	1	1	\vdash		\square	1	1	j—	1	†		
		Γ	Τ		Τ		1	1	1	1	1	1	T	1-	T	1	1	1	1-	1	1	1	1	1	İ	1	1	1	1		1	1		7
	L C	Ι×		2	T		1	1	3 6	<u>ز ا</u>	1-	1-	\uparrow	1	\dagger	1-	+	+		\dagger	\dagger	1	1-			\vdash		\uparrow	†	<u>†</u>	†			
		STRYK	<		1	\top	1		1	10	, ,	1-		\uparrow	╈	+	+	+	1	+	1-	1	1	1		+-		1-	<u> </u>		+ -			
		1		1	1		1		† -	ン い い		t	+	+-	\dagger	+	+	\uparrow	+	+-	-	+	+	1-		1-	1-	\uparrow	1	<u> </u>				
		32	Ξ	1	1-	1-	1	1	12						\uparrow	+	1	+	+-	+	1-	1-	1-	†	 			1-			+			
		1	1.,	1	1	T	1	1	\vdash		1-	1	1	1-	\dagger	+	1-	\uparrow	+	+	+	+	╞──	<u> </u>		†-		+	\vdash	+	 			
			1	1	1	1	1	<u> </u>	1-	-			1	\uparrow	\uparrow	+	+-	+	1-	+	+	+	1					+						
			-	† -	1		1-		1		1		†-	+-	+	+	+	+	+	+-	+	+	1				<u> </u>							
	F			1	1		1.		1.2				1	+	+	+	┽─	+	+	+		+		-				-						
4	ELEMENT		1.	1		<			10		1-	\vdash	╞	+	+	+	╋	+	+-	+	+	+				-				<u> </u>				
H	L m		1	\vdash	1.		1.			1	\vdash	-	┼─	┼╌	╋	+	+	+	+-	+	+	 						1						<u> </u>
4			Ē			-			4	-				╉╾	+	+	+	╋	+	+	+	\vdash							i				-+	
$\overline{\mathbf{a}}$			=		< <	-	1		1-	-			-	+	+	+-	+	┼╴	+	+	+	+											-+	
	ш		5		2	1	<u> </u>	-	: र	T			1-	╋	+	+	╉	+	+	+		┨	-					<u> </u>						_
STRUKTURDATA			ú		-	-	2		2				-	+	+-	+	+	+-	+-	┨──	┼─							<u> </u>				_		
	1		:0		۔ `		-			+				┨	╀	+-	+	┼─	+			–											-+	
		20	2			=				H.		-		+	╞	+-	+	┢╌		┼														
	}		-	7		E	1.7			_			-	+-	┼─	+	+-	+-	+	+														
\mathbf{X}	LNR					-	- /							+	╉──	+	╂─	+	+														_	
													┼─	┼─	╀─		╉─	╀	+	+			<u> </u>										-+	
m		16								-			-	+	╀╌	+	╀─			+	╂	–	Ļ					 		ļ				
									41	: ^					╀	+	+	-	+		┼──	<u> </u>												
	KORS NR													┼─	+	+	┨—	\vdash	┨	╂—	╂──	╂—						 		ļ			-+	
0)	öż								-					╀─	+	+	+	┼─	╂	–	╂		-									_		
	X	12						-						┢	+-	+	+	┨	┨	_		_												
		-							5	1				+	┼─	+-		╞	+															
	~								2	0 17				┢	┼╌	+-		–	+	┨──		 												_
	OMR R RN		3	2	-	\sim	•		20	20				-	┼─		╂	╋	_	_	_	ļ												-
	ζZ			- 1		-1		-+	-	-				┼	┢	+	+	┼──			_	 				_						-+	_	
								-+							┝		+	┢	_	_	_	₋											_	
		2						\neg		_		_			╀─	+-	–	_	+	┨	ļ	 				_							-	
	4		١C		-			4	-					_	┝		_		<u> </u>		<u> </u>	ļ												
	0		11		->					_	_		_	<u>.</u>	-	-	+	-	+	 	ļ						_							-
	GDA		31					-						_		 	┨	_		_		 											7	
		e	4 BDAD		-				-	\dashv						╂	_	┨		_	<u> </u>											_	_	
	ЪТ		04							_		_			-	+	<u> </u>		<u> </u>	<u> </u>		ļ				_			•				-	-
		-												L.,	1	1	L	L	1	L	I												1	

Surface fracture form - Structural data

APPENDIX A-4

37

56 техт **ANM – DATA** 19 LNR 16 KORS NR 12 OMR NR 05BDAD GDA Э ΡT Τ

APPENDIX A-5

APPENDIX A-6

Surface fracture form - VIAK

BESTALLARE: PROJEKT:					NR:	SIDA: _
TOPOKARTA:				RUTA	NR:	
LOKAL BESKRIVN						
BERGART: FOLIATION: HALLYTA M ² :				(MIN	. 400 M ²)	VIAK <u>A</u>
STRYKNING NXXW(E)	STUPNING XXW(E)	AN- TAL >1	SPRICKTYP, Fyllnad XX	LANGD DM	TGF XXX	DVRIGT
				+		
			······			
					•••••	
			·······			
HALLBE SKRIVN .:						

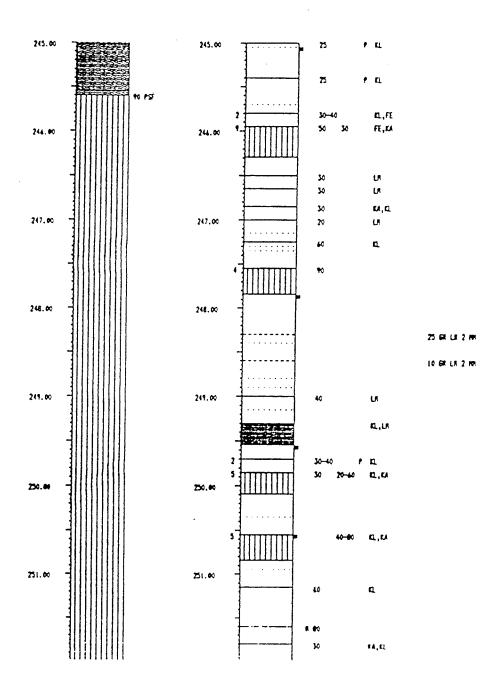
Depth (m) Uptake, U				typ	e:	r		Fracture chara	cter:		
	in (;	div > 10	idu °cm	al dis	t.)	systems (< 10 cm dist.)	number parallel	coating: mineral	weathered w smooth s	angle to core axis	miscellaneous
	coated a	fresh are	sealed	partly δ sealed σ	fracture indication #	<pre>fracture zone (f.z.) = f.z. with fresh surfaces f.z. with fresh and coated surfaces crushed zone gouge</pre>	crossing	thickness mm	rough r polished p partly polished p.p		
00- 0,25	X					$ t'^2$	4	Fe, ca	r w	45,90.30,6	
45-1,55	\mathbf{X}	X			42	millan 10,45-1,30	3+14	EE		450-10,90	U= 1,09
1.80	X							m	rx	20	
2.70		X							V	90	
0=2.19		X							r	. 70 .	
30	X						· .	m	r	82	
2.4570	X	\boldsymbol{X}				Az	4+2	m	Y w	0,45,70	
80	\times							m	r itt	45	·
- 95		\times							· /	-19	· · · · · · · · · · · · · · · · · · ·
32060	X	X			ļ	A bompson langn	2+6	Fa	rw	0,90	
. 7586						A2 P	3.	FR	rĸ	50,70,90	V= 3.86
4,00	X	X					7+7	m	<u>r.</u>	45,90	
7050	X					f2	6	chl, l	¥#	0-10,60	
65	X	+			<u> </u>			m	<u>r</u> .	76	
.8505	1		╞	<u> </u>				mit	rto	10,45 %	
5.15								m	<u> </u>	90	
-4055]				f2	5	Fe, C d grove thy like	<i>t</i>	10,90	
5.65	+		+			<u> </u>		provelly like	e V	90	
75-6.35	¥	£	+	- <u> </u>		12	9+7	dil 10	r	70,20,90	<i>u=</i> 6.09
.60		$\downarrow \chi$	-		_ 				Y	90	

Fracture logging diagram


APPENDIX B-1

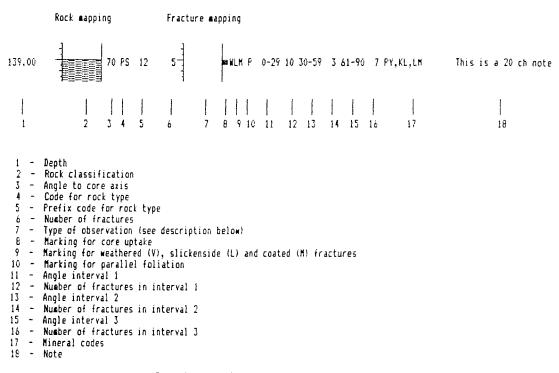
Core mapping form

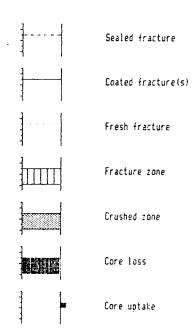
40

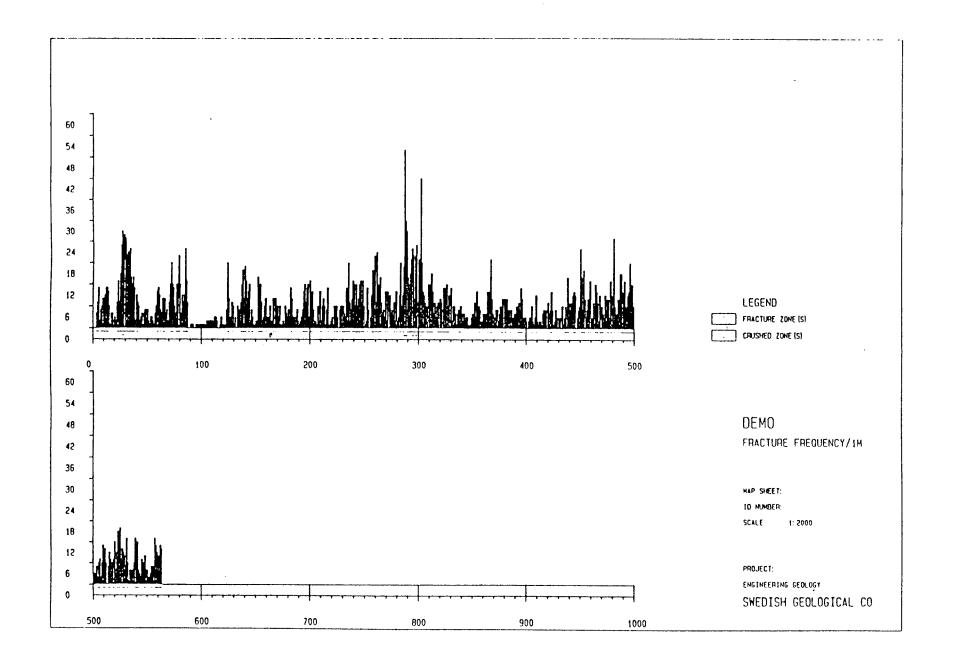

APPENDIX B-2

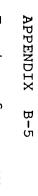
Hand drafted core log

APPENDIX B-3


Computer drafted core log

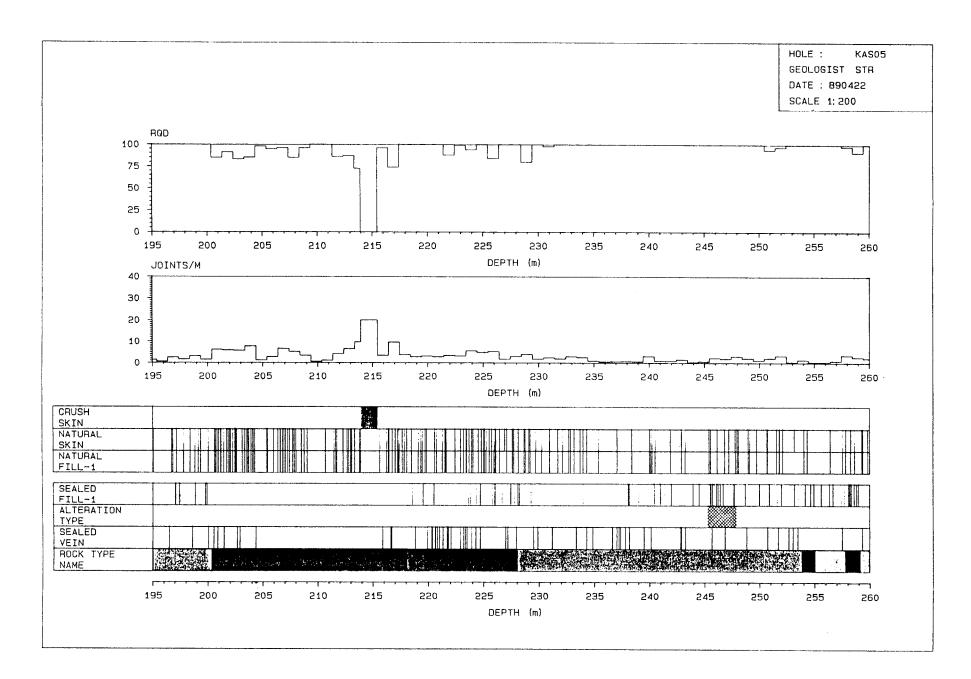

Plot description

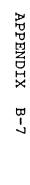

Description


of plot symbols and codes

Ivpe of observation

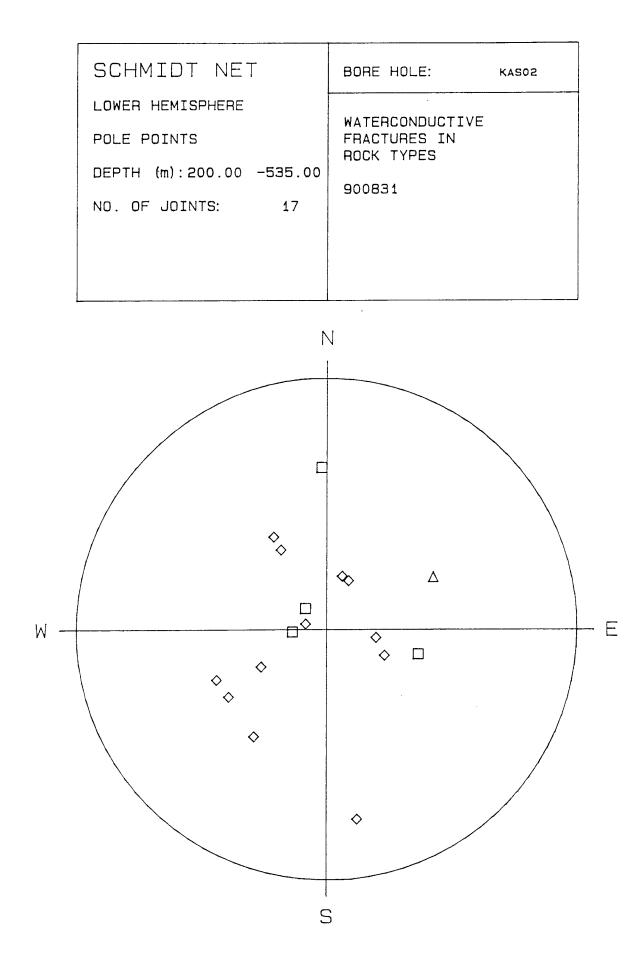
Fracture frequency plot


APPENDIX B-6


Listing of rock codes

Borehole

Rock zones


From	То	Rock code	
3.70	71.15	PSE	
71.15	71.95	MMB	
71.95	75.10	PSE	
75.10	79.80	MMB	
79.80	85.00	PSE	
85.00	86.40	MMB	
85.40	140.60	PSE	
140.60	143.90	MMB	
143.90	153.40	FSE	
153.40	155.80	MME	
155.80	167.35	PSE	
167.35	169.25	MME	
169.25	170.20	FSE	
170.20	187.00	MME	
187.00	192.70	PSE	
192.70	193.65	MME	
193.65	218.15	PSE	
218.15	219.85	HSC	
219.85	223.00	PSE	
223.00	223.65	HSC	
223.65	228.90	PSE	
228.90	229.05	HSC	
229.05	234.05	PSE	
234.05	236.10	MMB	
236.10	236.65	PSE	
236.65	236.75	MMB	
236.75	249.10	FSE	
249.10	250.10	HSC	
250.10	283.85	FSE	
283.85	289.00	MMB	
289.00	308.00	FSE	
308.00	309.15	MME	
309.15	316.40	PSE	
316.40	317.90	MMB	
317.90	318.75	PSE	
318.75	325.25	MMB	
325.25	343.25	FSE	
343.25	344.60	HSC	
344.60	345.60	PSE	
345.60	345.85	MMB	
345.85	390.90	FSE	
390.90	391.25	MME	
391.25	407.10	PSE	
409.10	409.B0	MME	
409.80	421.20	PSE	
421.20	421.75	MME	
421.75	443.95	PSE	
443.95	444.60	MME	
444.60	449.90	PSE	
449.90	460.00	VS	
460.00	462.70	PSE	
462.70	464.00	MMB	
464.00	464.50	PSE	
464.50	470.55	MMB	
470.55	473.40	VS	
473.40	473.70	MMB	
473.70	478.00	VS	

Multicolour plot from Petro Core Mapping System APPENDIX B-8

Schmidt net plot from Petro Core Mapping System

APPENDIX C-1 (1)

	code dictionary able FLM
AD	Andalusite
AK	Arsenopyrite
AM	Amphibole
AP	Apatite
AZ	Azurite
BA	Baryte
BG	Galena
BI	Biotite
BR	Bornite
CM	Clay minerals
DI	Diopside
DL	Dolomite
EP	Epidote
FE	Iron oxide
FL	Fluorite
FM	Dark minerals
GA	Garnet
GL	Mica
GR	Graphite
HB	Hornblende
HM	Hematite
IL	Ilmenite
KA	Calcite
KB	Carbonate
KG	Cuprite
KK	Chalcopyrite
KL	Chlorite
KN	Caolinite
KR	Chromite
KS	Cassiterite
	Kyanite
KY	
LA	Laumontite
LI	Olivine
LM	Light minerals
MA	Malachite
MG	Magnetite
MI	Microcline
MK	Pyrrhotite
ML	Molybdenite
MT	Magnesite
MU	Muscovite
NE	Nepheline
PE	Pentlandite
PK	Opaque minerals
PL	Plagioclase
PR	Prenhite
PT	Pseudotachylyte
PX	Pyroxene
PX	Pyrite
	-
QZ	Quartz Dod folderar
RF	Red feldspar
RU	"Rust" minerals
SC	Scheelite
SE	Serpentine

.

APPENDIX C-	1 ((2)	
-------------	-----	-----	--

SF SI SK SU TA TI TR TU VF WL WT ZB ZE	Feldspars Sillimanite Scapolite Sericite Sulphides Talc Titanite Tremolite Tourmaline Uranipherous mineral White/grey feldspar Wollastonite Wolframite Sphalerite Zeolite
ZE XX	Unknown mineral

APPENDIX C-2 (1) Rock code dictionary GEOTAB table FLR Indeterminable rock BGT Various rocks D Mafic rock DB Basite (mafite) DBA Intermediate rock DI Acid rock DS Felsite DSA Ore quartzite DSC DSB Leptite Volcanite and/or sediment DX Volcanite or plutonite DY Xenolite DZ Hypabyssal rock Η Mafic hypabyssal rock HB HBA Porphyritic gabbro Diabase HBB Olivine diabase HBC HBD Lamprophyre Foidbearing hypabyssal rocks HF Intermediate hypabyssal rock ΗI Porphyritic syenite AIH Porphyritic diorite HIB Acid hypabyssal rock HS Porphyritic granite HSA HSB Peqmatite Aplite HSC HSD Granite-vein HSE Quartz-vein Ultra-mafic hypabyssal rock HU Lamprophyre HUA HUB Kimberlite Metamorphic rock Μ Veined gneiss MHB High-grade metamorphic mica schist MHC High-grade metamorphic rock MH Migmattite MHG Glassy quartzite MHA Charnochite MHE Granulite MHF High-grade metamorphic amphibolite MHD Eclogite MHH MKB Hornfels MKA Skarn Crystalline limestone MKH Contact metamorphic rock (tectite) MK MLC Slate MLD Low-grade metamorphic phyllite Low-grade metamorphic rock ML Soapstone MLA MLB Greenschist Medium-grade metamorphic phyllite MMA Medium-grade metamorphic mica schist MME Graphite schist MMF Medium-grade metamorphic rock MM

APPENDIX C-2 (2)

	· · · · · · · · · · · · · · · · · · ·
MMG	Quartzite
MMB	Greenstone
MMD	Medium-grade metamorphic amphibolite
MT	Regional metamorphic rock (tectonites)
MTA	Mylonite
MTB	Tectonic breccia
MTC	Tectonite
Р	Plutonite
PB	Mafic plutonite
PBA	Anorthosite
PBB	Gabbro
PBC	Leuco-gabbro
PBD	Anorthositic gabbro
PBE	Gabbroic anorthosite
PBF	Mela-gabbro
PBG	Troctolite
PBH	Olivine gabbro
PBI	Gabbronorite
PBJ	Norite
PBK	Clinopyroxene norite
PBL	Orthopyroxene gabbro
PBM	Hornblende gabbro
PF	Foidbearing plutonites
PFA	Foidbearing alkali feldspar syenite
PFB	Foidbearing syenite
	Foidbearing monzonite
PFC	Foidbearing monzodiorite
PFD	
PFE	Foidbearing monzogabbro
PFF	Foidbearing diorite
PFG	Foidbearing gabbro
PFH	Foid syenite (nepheline syenite)
PFI	Foid monzosyenite (foid plagisyenite)
PFJ	Foid monzodiorite (essexite)
PFK	Foid monzogabbro
PFL	Foid diorite
PFM	Foid gabbro (theralite, teschenite)
PFN	Foidolite
PI	Intermediate plutonite
PIA	Alkali-feldspar syenite
PIB	Syenite
PIC	Monzonite
PID	Monzodiorite
PIE	Monzogabbro
PIF	Diorite
PS	Acid plutonite
PSA	Quartzolite
PSB	Quartzrich granitoids
PSC	Alkali-feldspar-granite
PSD	Alaskite
PSE	Granite
PSF	Granodiorite
PSG	Tonalite
PSH	Trondhjemite
PSI	Quartz-alkalifeldspar syenite
PSJ	Quartz syenite
PSK	Quartz monzonite
PSL	Quartz-monzo diorite
PSM	Quartz-monzo gabbro

APPENDIX C-2 (3)

PSN	Quartz diorite
PSO	Quartz gabbro
-	Quartz norite
PSP	
PSR	Quartz anorthosite
PSS	Grey granodiorite
\mathbf{PST}	Pink granodiorite
PSU	Red granodiorite
PSV	Red young granite
PU	Ultra-mafic plutonite
PUA	Peridotite
PUB	Dunite
PUC	Pyroxene peridotite
	Haraburgito
PUD	Harzburgite
PUE	Lherzolite
PUF	Wherlite
PUG	Pyroxene-hornblende peridotite
PUH	Hornblende peridotite
PUI	Pyroxenite
PUJ	Olivine pyroxenite
PUK	Olivine orthopyroxenite
PUL	Olivine websterite
	Olivine clinopyroxenite
PUM	
PUN	Olivine-hornblende-pyroxenite
PUO	Orthopyroxenite
PUP	Websterite
PUR	Clinopyroxenite
PUS	Hornblende pyroxenite
PUT	Hornblendite
PUU	Olivine hornblendite
PUV	Olivine-pyroxene hornblendite
PUX	Pyroxene hornblendite
	Perknite
PUY	
PUZ	Serpentinite
S	Sedimentary rock
SA	Sandstone (arenite)
SAA	Quartz sandstone (quartz arenite)
SAB	Arkose
SAC	Lithic sandstone (subgreywacke)
SE	Evaporite
SK	Carbonaceous rock
SKA	Limestone
SKB	Calcareous sandstone
	Marl
SKC	
SKD	Dolomite
SKE	Magnesite
\mathtt{SL}	Argillite
SLA	Argillitic greywacke
SLB	Siltstone
SLC	Claystone (mudstone)
SLD	Shale
SLE	Alum shale
SN	Nonclastic sediment
SNA	Chert
	Flint
SNB	
SNC	Jaspilite
SND	Quartz ore
SOI	Soil

```
APPENDIX C-2 (4)
```

SR	Conglomerate and breccia
SRA	Orthoconglomerate
SRB	Monogenetic conglomerate (oligomictic
	conglomerate)
SRC	Polygenetic conglomerate (petromictic
DAG	conglomerate)
CDD	Paraconglomerate (diamictite)
SRD	
SRE	Tillite
SRF	Sedimentary breccia
SW	Wacke
SWA	Quartzwacke
SWB	Feldspathic greywacke
SWC	Lithic greywacke
v	Volcanite
VB	Mafic volcanite
VBA	Basalt
VBB	Olivine basalt
VBT	Tuffite
VBI VF	Foid volcanite
VFA	Phonolite
VFB	Tephritic phonolite
VFC	Phonolitic tephrite
VFD	Tephrite
VFE	Phonolitic foidite
VFF	Tephritic foidite
VFG	Foidite
VFT	Tuffite
VI	Intermediate volcanite
VIA	Intermediate lava: alkali trachyte
VIR	Intermediate lava: trachyte
	Intermediate lava: latite
VIC	
VID	Intermediate lava: latite andesite
VIE	Intermediate lava: latite basalt
VIF	Intermediate lava: andesite
VIH	Intermediate tuff: alkali trachyte
VII	Intermediate tuff: trachyte
VIJ	Intermediate tuff: latite
VIK	Intermediate tuff: latite andesite
VIL	Intermediate tuff: latite basalt
VIM	Intermediate tuff: andesite
VIT	Tuffite
VS	Acid volcanite rock
VSA	Acid lava: alkali rhyolite
VSB	Acid lava: rhyolite
VSC	
VSD	Acid lava: dacite
VSE	Acid lava: quartz andesite
VSH	Acid tuff: alkali rhyolite
VSI	Acid tuff: rhyolite
VSJ	Acid tuff: rhyodacite (quartz latite)
VSK	Acid tuff: dacite
VSL	Acid tuff: quartz andesite
VST	Tuffite
VU	Ultra-mafic volcanite
VUA	Picrite
XXX	Ore

*

APPENDIX C-3

Prefix rock code dictionary

GEOTAB table CMLPC

11	Pegmatite as veins and dykes
12	With undetermined fragments
13	With partly assimilated fragments
14	With inhomogenities
15	Altered to granite
16	Altered to sericite
17	Altered to chlorite
18	Altered to skarn
19	Altered to quartz
20	Altered to gneiss
21	Altered to veined gneiss
22	Hydrothermal alterations
23	Altered to albitite
24	Altered to scapolite
25	Altered to epidote
26	Altered to serpentine
27	Recrystallized
28	Tectonized

APPENDIX C-4 GEOTAB table SFLE - Element codes lexicon AC Axial plane foliation Axial plane AP Fold axis F Lineation \mathbf{L} Foliation S \mathtt{SL} Mineral lineation, rodding GEOTAB table SFLF - Fracture codes lexicon С Closed co Closed - open Closed - sealed CS 0 Open OC Open - closed Open - sealed os Sealed S Sealed - closed SC Sealed - open SO GEOTAB table SFLP - Profile codes lexicon Profile A Α Profile B В GEOTAB table CMLFT - Fracture type codes lexicon С Coated Fresh F S Sealed GEOTAB table CMLC - Fracture surface character codes lexicon Coated С Slickenside Polished Ρ R Rough Smooth

S

Weathered

- \mathbf{L}

- W
- Х Other

APPENDIX C-5

mill

GEOTAB table RCLAM - Analyzing method codes lexicon

A E F G J K N R S T V	Atomic absorption Electrochemistry Spectrophotometry Gravimetry Jumbo spectrophotometry Gamma spectrometry Neutron activation X-ray fluorescence Spectrometry (colorimetry) Titrimetry Atomic absorption (flame emission)
GEOTAB t	able RCLST - Sample treatment codes lexicon
A B L M T V X	Leaching with ascorbic acid - hydrogen peroxide Leaching with bromine water (HBr) Leaching with acid (HNO3, HCL) Grinding information Total dissolution Total dissolution (HF, H2SO4) Dissolution after melting
GEOTAB t	able RCLSP - Sample preparation codes lexicon
A G J S T V W X	Grinding in agate mill Grinding in jet mill Ashing Ashing with additive Grinding in steel mill grinding with additive in steel mill Mineral separation, till samples Grinding in tungsten carbide mill Grinding with additive in tungsten carbide

APPENDIX C-6 (1)

Codes for rocktype and rocktype characteristics used in GEOTAB (same as in Petro Core Mapping System)

COLUMN	VARIABLE	CODE	CODE	
RCODE	NAME	102 103 104 105 122 123 124 143 145 146 171 172	HSB HSC HSD HSE MTA MTB MS PSE PSF PSG VB VI VI	PEGMATITE APLITE GRANITE VEIN QUARTZ VEIN MYLONITE BRECCIA META SEDIMENT GRANITE GRANODIORITE TONALITE BASIC VOLCANITE INTERMEDIATE VOLCANITE ACID VOLCANITE
RCCODE	COLOUR		101 102 103 104 105 106 107 108 109 110	WHITE GREY GREY-RED RED-BROWN PINK GREEN BLACK DARK BRIGHT
RSCODE	STRUCTURI	Ξ	101 102 103 104 105 106 107 108	HOMOGENOUS SCHISTOSE GNEISSIC BANDED MYLONITIC BRECCIATED LAYERED TECTONIZED
RICODE	INTENSITY	Ζ	101 102 103 104	FAINT WEAK MEDIUM STRONG
RGCODE	GRAINSIZI	5	101 102 103 104	APHANITIC FINE GRAINED MEDIUM GRAINED MEDIUM-COARSE GRAINED
RTCODE	TEXTURE		105 101 102 103 104	COARSE GRAINED EVEN GRAINED PORPHYRITIC AUGEN UNEVEN GRAINED

APPENDIX C-6 (2)

		700	OWIDIGED
ALTER	ALTERATION	700	OXIDIZED
		701	CHLORITISIZED
		702	EPIDOTISIZED
		703	WEATHERED
		704	TECTONIZED
		705	SERICITISIZED
		706	MIAROLITIC

APPENDIX C-7

Fracture mineral codes used in Petro Core and GEOTAB.

FILL	MINERAL	
1	QZ	quartz
2	ŘL	chlorite
3	KA	calcite
4	EP	epidote
5	HM	hematite
6	РҮ	pyrite
7	PR	phrenite
8	LA	laumontite
9	ZE	zeolite
10	СҮ	
11	\mathbf{PT}	pseudotachylyte
12	KK	chalcopyrite
13	BI	biotite
14	FE	iron
15	${ m FL}$	fluorite
16	RF	red feldspar
17	SU	sulphides
18	VF	white/grey feldspar
19		
20	MU	muscovite
21	KN	caolinite
22	MK	pyrrhotite
23	WL	wollastonite
24	AM	amphibolite
	ZZ	no mineral (only in GEOTAB)
90		UNKNOWN

APPENDIX D-1 (1)

Variables and subvariables in the Petro Core Mapping System

Variable 1: Break

Sub1	BREAK	1111	BREAK
SUDI	BREAK	****	DKDAL

Variable 2: <u>Natural fractures</u>

Sub1	FILL-1	1-99	See FLM
Sub2	FILL-2	1-99	See FLM
Sub3	FILL-3	1-99	See FLM
Sub4	FILL-4	1-99	See FLM
Sub5	ROUGHNESS	1	PLANAR
		2	UNDULATING
		3	STEPPED
		4	IRREGULAR
Sub6	SURFACE	1	ROUGH
		2	SMOOTH
		3	SLICKENSIDE
Sub7	SKIN	1	WEATHERED
		2	DULL
		3	CAVITIES
		4	OPEN
Sub8	ALFA	5002	DEGREES
Sub9	BETA	5002	DEGREES
Sub10	WIDTH	5002	MM

Variable 3: <u>Sealed fractures</u>

Sub1 Sub2	VEIN FILL-1	100-500 1-99	See FLR See FLM
Sub3	FILL-2	1-99	See FLM
Sub4	FILL-3	1-99	See FLM
Sub7	SKIN	1	WEATHERED
		2	DULL
		3	CAVITIES
		4	OPEN
Sub8	ALFA	5002	DEGREES
Sub9	BETA	5002	DEGREES
Sub10	WIDTH	5002	MM

APPENDIX D-1 (2)

	(-/		
Variable	4: Crush zone		
Sub1	FILL-1	1-99	See FLM
Sub2	FILL-2	1-99	See FLM
	FILL-3	1-99	See FLM
Sub3		1-99	See FLM
Sub4	FILL-4		
Sub5	ROUGHNESS	1	PLANAR
		2	UNDULATING
		3	STEPPED
		4	IRREGULAR
Sub6	SURFACE	1	ROUGH
		2	SMOOTH
		3	SLICKENSIDE
Sub7	SKIN	1	WEATHERED
		2	DULL
		3	CAVITIES
		4	OPEN
Sub8	ALFA	5002	DEGREES
Sub9	BETA	5002	DEGREES
Sub10	WIDTH	5002	MM
Variable	5: <u>Rocktype</u>		
Sub1	TYPE	100-500	See FLR
Sub2	COLOUR	101	WHITE
DUDL	COLOUR	102	GREY
		103	GREY-RED
		104	RED
		105	RED-BROWN
		105	PINK
		108	GREEN
		108	BLACK
		109	DARK
		110	BRIGHT
Sub3	STRUCTURE	101	HOMOGENOUS
		102	SCHSTOISE
		103	GNEISSIC
		104	BANDED
		105	MYLONITIC
		106	BRECCIATED
		107	LAYERED
		108	TECTONIZED
Sub4	INTENSITY		101 FAINT
		102	WEAK
		103	MEDIUM
		104	STRONG
Sub5	GRAINSIZE	101	APHANITIC
		102	FINE GRAINED
		103	MEDIUM GRAINED
		104	MEDIUM-COARSE
		105	COARSE GRAINED
Sub6	TEXTURE	101	EVEN GRAINED
auno	TEVIOLE	102	PORPHYRITIC
		102	AUGEN
			UNEVEN GRAINED
G , .), C		104	
Sub8	ALPHA	5005	DEGREES
Sub9	BETA	5005	DEGREES

APPENDIX	D-1 (3)		
Variable	6: <u>Structure</u>		
Sub1	ТҮРЕ	600 601 603 604 605 606 607	HOMOGENOUS SCHISTOSE GNEISSIC BANDED MYLONITIC BRECCIATED LAYERED
Sub2	INTENSITY	600 601 602 603	FAINT WEAK MEDIUM STRONG
Sub8 Sub9	ALPHA BETA	5006 5006	DEGREES DEGREES
Variable	7: <u>Alteration</u>		
Subl	TYPE	700 701 702 703 704 705	OXIDIZED CHLORITISIZED EPIDOTISIZED WEATHERED TECTONIZED SERICITISIZED
Sub2	INTENSITY	706 700 701 702 703	MIAROLITITIC FAINT WEAK MEDIUM STRONG
Variable	8: <u>Uptake</u>		
Sub1 Sub2 Sub3	UPTAKE MARKED DIFF	800 5008 5008	CORE RECOVERY M M
Variable	9: End of orienta	tion	
Sub1	ORIENTATION TYPE	900	RELATIVE ORIENTATION
		901	IRON ROD ORIENTATION
		902 903	TV ORIENTATION TELEVIEWER ORIENTATION
Cubo	CODD ANGLE	904 905 906 5008	IMPRESSION PACKER CRAELIUS INDENTER FICTIVE TV SECTION DECREES

CORR ANGLE 5009 DEGREES

5009

Μ

Sub2 LENGTH

Sub3

APPENDIX D-1 (4)

Variable	10: <u>Orientation c</u>	of fractur	<u>es</u>
Sub1	TYPE	1000	JOINT
Duxi		1001	VEIN
		1002	CONTACT
		1003	SCHISTOSITY
		1004	BIT SHARPENING
Sub2	INSTRUMENT	1000	TELEVIEWER
_		1001	BOREHOLE TV
Sub7	COLOUR	1000	BLACK
C ubo		1001	WHITE DEGREES
Sub8 Sub9	ALPHA BETA	5010 5010	DEGREES
Subj Sub10	APERTURE	5010	MM
DUDIO	AI LINI ONL	5010	
Variable	11: <u>Core loss</u>		
Sub1	TYPE	1100	SOFT FILLING
		1101	CRUSHED ZONE
		1102 1103	VEIN MECHANICAL
Sub2	MISS CORE	5011	M
Subz	MISS CORE	5011	P1
Variable	12: <u>Box</u>		
Sub1	BOX NUMBER	5012	NUMBER
Sub2	ROW	5012	NUMBER
Sub3	SHELF	5012	NUMBER
Variable	18: Position		
Vurrubie	10. <u>10010101</u>		
Sub1	METHOD	1800	SURVEYING
		1801	DEVIATION
			MEASUREMENTS
Sub2	X	5018	X
Sub3	Y Z	5018 5018	Y Z
Sub4 Sub5	DIP	5018	DEGREES
Sub6	DIR	5018	DEGREES
3000	DIK	5010	DEGREES
Variable	19: Drill method		
Sub1	METHOD	1900	CORE DRILLING
BUDI	METHOD	1900	WIRE DRILLING
		1902	PERCUSSION DRILLING
		1903	BOOSTER DRILLING
		1904	ROTARY DRILLING
		1905	RAISE BORING
		1906	FULL FACE BORING
Variable	103: Fracture orio	<u>entation</u>	

Variable 103: Fracture orientation

Sub1	DIP	5103	DIP
Sub2	STRIKE	5103	STRIKE

List of SKB reports

Annual Reports

1977-78 TR 121 **KBS Technical Reports 1 – 120** Summaries Stockholm, May 1979

1979

TR 79-28 The KBS Annual Report 1979 KBS Technical Reports 79-01 – 79-27 Summaries Stockholm, March 1980

1980 TR 80-26 **The KBS Annual Report 1980** KBS Technical Reports 80-01 – 80-25 Summaries Stockholm, March 1981

1981 TR 81-17 **The KBS Annual Report 1981** KBS Technical Reports 81-01 – 81-16 Summaries Stockholm, April 1982

1982

TR 82-28 **The KBS Annual Report 1982** KBS Technical Reports 82-01 – 82-27 Summaries Stockholm, July 1983

1983 TR 83-77 **The KBS Annual Report 1983** KBS Technical Reports 83-01 – 83-76 Summaries Stockholm, June 1984

1984 TR 85-01 Annual Research and Development Report 1984

Including Summaries of Technical Reports Issued during 1984. (Technical Reports 84-01 – 84-19) Stockholm, June 1985

1985

TR 85-20 Annual Research and Development Report 1985

Including Summaries of Technical Reports Issued during 1985. (Technical Reports 85-01 – 85-19) Stockholm, May 1986 1986 TR 86-31 SKB Annual Report 1986 Including Summaries of Technical Reports Issued during 1986 Stockholm, May 1987

1987 TR 87-33

SKB Annual Report 1987

Including Summaries of Technical Reports Issued during 1987 Stockholm, May 1988

1988 TR 88-32 SKB Annual Report 1988 Including Summaries of Technical Reports Issued

during 1988 Stockholm, May 1989

1989 TR 89-40 SKB Annual Report 1989 Including Summaries of Technical Reports Issued during 1989

Stockholm, May 1990