

TECHNICAL REPORT

91-06

Description of background data in SKB's database GEOTAB. Version 2

Ebbe Eriksson, Stefan Sehlstedt

SGAB, Luleå

March 1991

SVENSK KÄRNBRÄNSLEHANTERING AB

SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM

TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 DESCRIPTION OF BACKGROUND DATA IN THE SKB DATABASE GEOTAB. VERSION 2

Ebbe Eriksson, Stefan Sehlstedt SGAB, Luleå March 1991

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB.

SWEDISH GEOLOGICAL CO Division of Engineering Geology Client:SKB REPORT IRAP 91008 Date:910304

DESCRIPTION OF BACKGROUND DATA IN THE SKB DATABASE GEOTAB
VERSION 2

Ebbe Eriksson Stefan Sehlstedt SGAB, Luleå

March 1991

ABSTRACT

During the research and development program performed by SKB for the final disposal of spent nuclear fuel, a large quantity of geoscientific data was collected. Most of this data was stored in a database called Geotab. The data is organized into eight groups (subjects) as follows:

- Background information
- Geological data
- Borehole geophysical measurements
- Ground surface geophysical measurements
- Hydrogeological and meteorological data
- Hydrochemical data
- Petrophysical measurements
- Tracer tests

Except for the case of borehole geophysical data, ground surface geophysical data and petrophysical data, described in the same report, the data in each group is described in a separate SKB report.

The present report describes data within the Background data group. This data provides information on the location of areas studied, borehole positions and also some drilling information.

Data is normally collected on forms or as notes and this is then stored into the database.

The background data group (subject), called BACKGROUND, is divided into several subgroups (methods).

- BGAREA area background data BGDRILL drilling information
- BGDRILLP drill penetration data
- borehole information BGHOLE
- BGTABLES number of rows in a table
- BGTOLR data table tolerance

A method consists of one or several data tables. In each chapter a method and its data tables are described.

CONTENTS

1	INTRODUCTION
2	BGAREA BACKGROUND AREA BACKGROUND DATA
3	BGDRILL BACKGROUND DRILLING INFORMATION 15 3.1 DRILL
4	BGDRILLP BACKGROUND DRILLING PENETRATION
5	BGHOLE BACKGROUND BOREHOLE INFORMATION
6	BGTABLES BACKGROUND NUMBER OF ROWS IN TABLE 29 6.1 ROWTAB
7	BGTOLR BACKGROUND DATA TOLERANCE BACKGROUND TABLE 30 7.1 TOLR
8	REFERENCES

1 INTRODUCTION

TRACER

Since 1977 Swedish Nuclear Fuel and Waste Management Co, SKB, has been performing a research and development program for the final disposal of spent nuclear fuel. One aim of this program is to gain knowledge of different bedrock properties. Measurements for the characterization of geological, geophysical, hydrogeological and hydrochemical conditions are performed in specific site investigations as well as for geoscientific projects.

Large volumes of data have been produced since the start of the program, in the form of both raw data and results. During the course of the research program this data has been stored in various formats by different institutions and companies performing the investigations. It was therefore decided that all data from the research and development program should be stored in a single database. The database, called Geotab, is a relational database, based on a concept from Mimer Information Systems. It has been developed further by Ergodata. The hardware is a VAX 750 computer, located at KRAB (Kraftverksbolagens Redovisningsavdelning AB), in Stockholm. Data is stored on-line on the VAX.

The structure of the Geotab database is described in Figures 1.1-1.4. Geotab is divided into eight groups (subjects), Figure 1.1. These are as follows:

BACKGROUND	Background information
GEOLOGY	Geological data
BHGPHYS	Borehole geophysical measurements
GSGPHYS	Ground surface geophysical
	measurements
PETRO	Petrophysical measurements
HYDRO	Hydrogeological and meteorological
	data
CHEMICAL	Hydrochemical data

Tracer tests

Each subject is devided into one or several methods and each method contain one or several tables. In Figure 1.2 the methods of the BACKGROUND subject are presented.

Figure 1.3 shows the structure of the method BGHOLE.

The structure of a specific table is illustrated in Figure 1.4. The terms record and field are also defined in this figure.

In this report all methods and tables within the background data subject (BACKGROUND) are described.

Table 1.1 Structure of the BACKGROUND subject

Subject	Method	Table
BACKGROUND	BGAREA	AREA
		AREALIM
		AREAREF
		AREAFIXP
	BGDRILL	DRILL
	BGDRILLP	DRILLPF
		DRILLPD
	BGHOLE	BHNAME
		BOREHOLE
		HOLEDIAM
		COREDIAM
		CASEDIAM
		CASETOP
		BHCOORD
		BHHIST
	BGTABLES	ROWTAB
	BGTOLR	TOLR

The database is continuously updated. Methods, tables or columns may change. This report will be updated accordingly.

Some Technical Reports dealing with different data sets stored in the Geotab database will be updated/written and printed during 1991. Among these are:

- TR91-01. Description of geological data in the SKB database Geotab. Stefan Sehlstedt and Tomas Stark.
- TR91-02. Description of geophysical data in the SKB database Geotab. Stefan Sehlstedt.
- TR91-05. Description of tracer data in the SKB database Geotab. Peter Andersson and Margareta Gerlach.
- TR91-07. Description of hydrogeological data in SKB's database Geotab. Bengt Gentzschein.

Protocols for collection of background information is available through the authors.

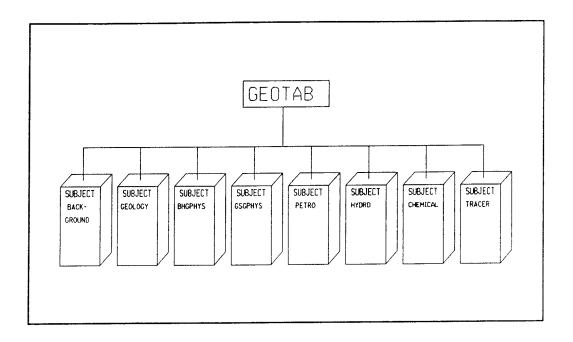


Figure 1.1 Structure of the Geotab database.

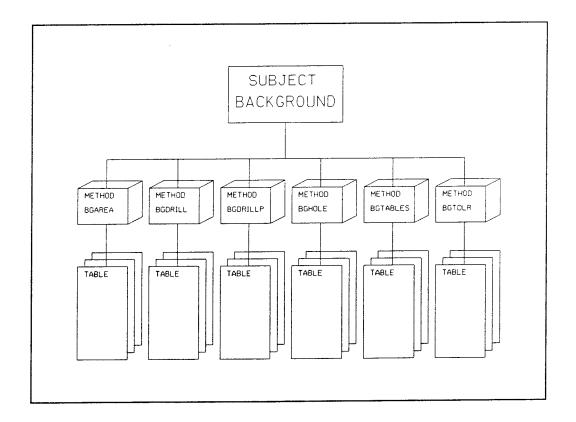


Figure 1.2 Structure of the subject BACKGROUND

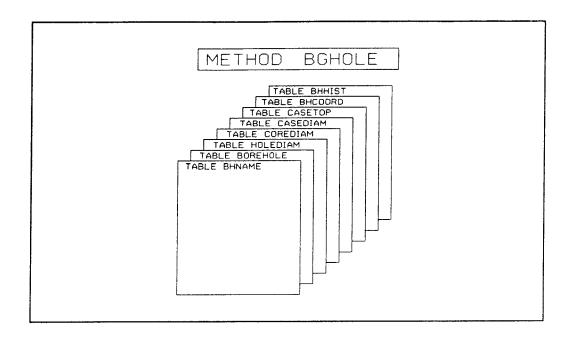


Figure 1.3 Structure of the method BGHOLE

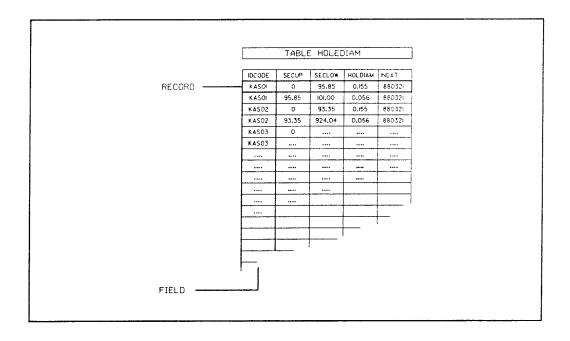


Figure 1.4 Structure of the table HOLEDIAM

2 BGAREA -- BACKGROUND AREA BACKGROUND DATA

The BGAREA method provides information on areas where different types of investigations have been conducted or are still on-going. Results from these investigation are stored under other subjects in the database.

The BGAREA - method contains the following tables:

- AREA Area and areacode connection
- AREALIM Grid corner coordinates
- AREAREF Area reference points
- AREAFIXP Area fixpoints

A short list from each table is found in Appendix A.

The areas concerned are of five different types.

- Reconnaissance areas where limited investigations have been conducted. Some ground geophysical profiles were usually measured.
- Investigation areas with one drilled borehole but without a local grid net. Some geophysical logging and hydrogeological investigations in the borehole and core mapping of the drill core have been undertaken.
- Investigation areas with a local grid net. In these areas, a large ground geophysical survey has usually been conducted. Geological mapping has also been performed and a series of percussion and core boreholes have been drilled. Geophysical logging, geological core mapping, hydrogeological measurements and geochemical measurement have been carried out in the boreholes.
- Areas associated with construction sites. The investigations performed at these sites may differ from those described earlier.
- Sites where measurement were taken for consultant assignments. These sites are usually located in Finland.

2.1 AREA

The table AREA contains the area name, the area code and also the name of the topographic map covering the area considered.

If investigation of an area has reached the point where ground geophysical measurements will be taken, a grid net must be available. If possible, the direction of

the grid net is selected so that the ground geophysical profiles measured will intersect geological formations (dykes or fracture zones) perpendicularly.

The grid net is established by using a theodolite to construct a frame work (T-lines), and a compass and wooden sticks to mark intersecting lines (H-lines). The grid net is used to define coordinates of boreholes, measuring points, geological observations etc within the area to be examined. Different measurements are then easily related to each other. An example of a grid net plan is shown in Figure 2.2.

Areas with data stored in the database are presented in Figure 2.1. The different areas investigated are listed in Appendix A.

GEO_DB .AREA Area and areacode connection (see record underlined in Appendix A page 1)

	(see record c	ander Ciffed its Appendix x page 17	
Column	Key	Text	Example
AREAC	*	area idcode	AS
AREAN		area name (geographical)	ÄSPÖ
MAPNAME		mapsheet (map name)	6н
PMAP		square in map	3A
XZERO		RAK x-coordinate where	
		local coordinate are (0,0)	6360253
YZERO		RAK y-coordinate where	4550047
		local coordinate are (0,0)	1550813
ZERO		Z-coordinate(m.a.s.l) where	
		local coordinate are (0,0)	
DIRGRID		grid-system direction, angle between RAK north direction and grid north	
		direction. Negative west of north RAK	
		direction. Negative west of north kak	-11.77
		angle between RAK north direction and	*****
DEV		magnetic north direction. Negative west	
		of north RAK direction.	-0.8
DAVDEE		RAK coordinate definition	3.5
RAKDEF		P=definition towards RAK fixpoint	
		O=true RAK fixpoint	
		D=definition on topographic map 1:50000	
		E=definition on topographic map 1:20000	
		F=definition on topographic map 1:10000	
		G=definition on topographic map 1:8000	
		H=definition on topographic map 1:4000	
		I=definition on topographic map 1:2000	I
ZDEF		Altitude definition	
2021		P=definition towards RAK fixpoint	
		O=true RAK fixpoint	
		D=definition on topographic map 1:50000	
		E=definition on topographic map 1:20000	
		F=definition on topographic map 1:10000	
		G=definition on topographic map 1:8000	
		H=definition on topographic map 1:4000	
		I=definition on topographic map 1:2000	
COMMENT		comment	GRID IDENTICAL TO
			AV GRID NET
INDAT		data input date to geodatabase	871104
	4.3	and the surface two lotte	or godo from
AREAC	the area	acode is a unique two lette	3. t
	the area	name. All codes used to d	date are
	presente	ed in Appendix A.	
AREAN	the area	name is chosen from the	
AREAN			
	topograp	ohical map.	
MAPNAME	a topogr	caphical map has a map name	e consisting
	of a cod	de (1-2 figures and 1 lette	er) and a
	geograph	nical name, i.e. 4F Lessebo	o.
DMAD	onch tor	ographic map is divided in	nto 25
PMAP	each cop	Ographic map is divided in	a mana
	(1:20000	o) or 100 (1:10000) economi	ic maps.
	These ma	aps are coded in the interv	/al 0a-9j ,
	i.e. 9H.	This code is called PMAP	in the
	database		
	uacabase	ed not in monitioned in the	National
XZERO	eacn gri	d net is positioned in the	- Macionai
	Co-ordin	nate System (RAK Rikets Ali	Lmanna
	Koordina	ater). XZERO is the north-s	south RAK
	co-ordin	nate of the origin (0 N /	0 E) of a
			,
	grid net		17a4i
YZERO	each gri	d net is positioned in the	e National
	Ξ.	The great and ADAM Dilector All	lmänna
	Co-ordir	late System (RAK RIKELS Al.	Liliailila
	Co-ordina	nate System (RAK Rikets Ali ater). YZERO is the east-we	est RAK co-

ordinate of the origin (0 N /0 N) of a grid net.

DIRGRID angle between RAK north and grid net north.

Grid net north is the direction of the side of the grid net which is closest to RAK north. This means that grid net north is always less than 45 degrees in a 360 degree system. DIRGRID is positive east and negative west of RAK north.

DEV angle between RAK north direction and magnetic north direction (360 degree system).

DEV is positive east of RAK north and negative west of RAK north.

RAKDEF defines the origin of the x- and y- coordinates. Indirectly, this gives the accuracy of the co-ordinates.

ZDEF defines the origin of the altitude above sea level.

COMMENT additional relevant information
INDAT date information was loaded to the database

It has normally not been considered necessary to make a complete geodetic measurement regarding the position of the local grid net relative to the National Co-ordinate System (RAK). Instead, several points in the local grid net which were easily identified in the terrain were marked on field maps. It was then possible to calculate an RAK co-ordinate for the origin of the grid net from the map. The accuracy of that co-ordinate depends of course on the resolution of the map used. In the table AREA the field RAKDEF and ZDEF is used to provide information on the resolution of the maps used and hence also the accuracy of the co-ordinate. Assuming that a borehole is correctly positioned on a map, and that the resolution on any map is 2 mm, the RAK coordinates will be specified to within the accuracy shown in Table 2.1.

Table 2.1 RAK co-ordinate accuracy for the grid net origin

=========	=======	
Geotab code	Map scale	RAK co-ordinate accuracy (m)
========	========	
D	1:50 000	100
E	1:20 000	40
F	1:10 000	20
G	1:8 000	16
H	1:4 000	8
I	1:2 000	4
P		0.01
0		0.01-0.1
=========		=======================================

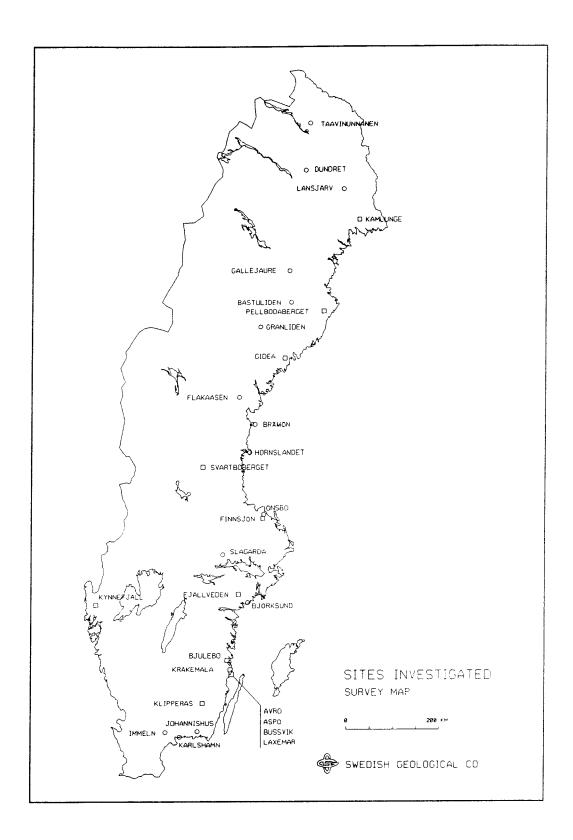


Figure 2.1 Map of areas investigated

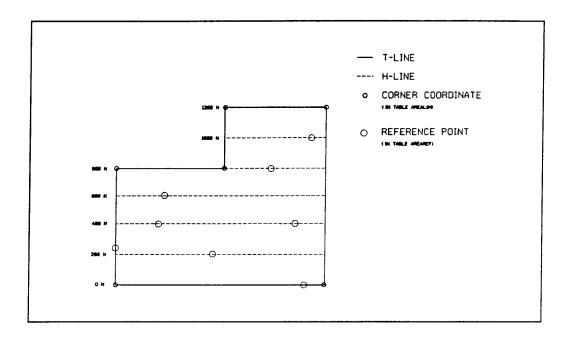


Figure 2.2 Grid net plan

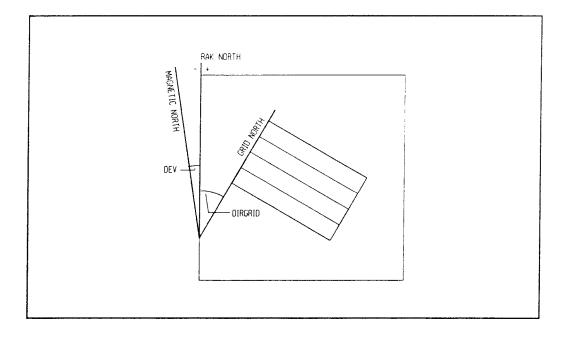


Figure 2.3 Grid net orientation

2.2 AREALIM

This table contains corner co-ordinates of the grid net. If the grid net is rectangular, four pairs of coordinates are needed to describe the net. The coordinates are given in local co-ordinates.

GEO_DB	.AREALIM	Grid corner co-ordinates (see record
		underlined in Appendix A page 1)

Column	Key	Text	Example
AREAC	*	area idcode	KM
XCOORD	*	x-co-ordinate local grid (m)	0
YCOORD	*	y-co-ordinate local grid (m)	2000
LDIRX		direction symbol for local	
		x-co-ordinate	N
LDIRY		direction symbol for local	
		y-co-ordinate	E
COM30		comments	
INDAT		data input date to geodatabase	
		(yymmdd)	880804

AREAC	The	area	code	is	a	unique	two	letter	code
	from	n the	area	nar	ne.	_			

XCOORD the north-south co-ordinate in the local grid net. To simplify plotting and calculations, co-ordinates south of the origin are taken to be negative.

YCOORD the east-west co-ordinate in the local grid net. To simplify plotting and calculations, co-ordinates west of the origin are taken to be negative.

LDIRX north (N) or south (S) symbol of the x-co-ordinate.

LDIRY east (E) or west (W) symbol of the y-co-ordinate.

COM30 additional relevant information

INDAT date information was loaded to the database

2.3 AREAREF

The local grid net in the field degenerates rapidly. Most of this disappears after a few years. To restore the net for use in further investigations, a series of so-called area reference point are used. Small metal plates with local co-ordinates are nailed to tree stumps left along the T-lines of the grid net. The local co-ordinates of these points are collected in AREAREF.

GEO_DB .AREA	REF	Area reference points (see record underlingage 2)	ned in Appendix A
Column	Key	Text	Example
AREAC	*	area idcode	KM
XCOORD	*	x-co-ordinate in local grid	200.000
YCOORD	*	y-co-ordinate in local grid	2000.00
LDIRX		direction symbol for local x-co-ordinate	N
LDIRY COM30		direction symbol for local y-co-ordinate comments	E
INDAT		data input date in geodatabase (yymmdd)	880804
	4. 1		tow godo
AREAC		a code is a unique two lette e area name.	ter code
XCOORD	net. To	ch-south co-ordinate in the simplify plotting and calculates south of the origin active.	culations,
YCOORD	the east net. To co-ording be negat	e-west co-ordinate in the simplify plotting and calculates west of the origin and cive.	culations, re taken to
LDIRX	north (Nordinate) or south (S) symbol for	the x-co-
LDIRY	east (E)	or west (W) symbol for th	ne y-co-
COM20	01 411400	aal relevant information	
COM30			
INDAT	date inf	formation was loaded to the	e database

2.4 AREAFIXP

If true RAK fixpoints or fixpoints measured from a RAK fixpoint are used to locate boreholes or the origin of the grid net itself in the RAK system, these fixpoints are collected in AREAFIXP.

An RAK fixpoint is a geodetically well determined fixpoint which is part of a system of triangular points attached to the National Co-ordinate System (RAK) of Sweden. In the terrain, these points are marked with bolts in the bedrock or in concrete constructions and are also presented on maps published by Lantmäteriverket (LMV).

No local z-co-ordinates are usually used during the field work in an area.

GEO DB .AREAFIXP Area fixpoints (see record underlined in Appendix A page 2)

COLUMN AREAC XCOORD YCOORD LDIRX LDIRY FIXNAME	Key * *	Text area idcode x-co-ordinate in local grid (m) y-co-ordinate in local grid (m) direction symbol for local x-co-ordinate direction symbol for local y-co-ordinate code or number of fixpoint	Exemple AS 6848.146 2079.353 N E
X		RAK x-co-ordinate for fixpoint	67380.746
Y		RAK y-co-ordinate for fixpoint	51460.546
Z		z-co-ordinate (m.a.s.l)	2.37
RAKDEF		co-ordinate method RAK definition	
		P=definition towards RAK fixpoint	P
		O=true RAK fixpoint	
ZDEF		Altitude definition	
		P=definition towards RAK fixpoint	Р
		O= true RAK fixpoint	
		D= definition on topographic map 1:50000	
		E= definition on topographic map 1:20000	
		F= definition on topographic map 1:10000	
		G= definition on topographic map 1:8000	
		H= definition on topographic map 1:4000	
		I= definition on topographic map 1:2000	
COM30		comments	200005
INDAT		data input date into geodatabase	880805

AREAC The area code is a unique two letter code from the area name.

XCOORD the north-south co-ordinate in the local grid net. To simplify plotting and calculations, co-ordinates south of the origin are taken to be negative.

YCOORD the east-west co-ordinate in the local grid net. To simplify plotting and calculations, co-ordinates west of the origin are taken to be negative.

LDIRX north (N) or south (S) symbol of the x-co-ordinate.

LDIRY east (E) or west (W) symbol of the y-coordinate.

x north-south RAK co-ordinate for the fixpoint east-west RAK co-ordinate for the fixpoint

altitude above the sea level (m) defines the origin of the x- and y- co-RAKDEF ordinates. Indirectly, this gives the

accuracy of the co-ordinates. O is a

permanent RAK fixpoint with high accuracy, P might not have the same accuracy and may also

disappear.

Defines the origin of the altitude above sea ZDEF

level.

additional relevant information COMMENT

date information was loaded to the database INDAT

3 BGDRILL -- BACKGROUND DRILLING INFORMATION

General information from drilling events are collected in the method BGDRILL. The method consists only of one table.

DRILL drilling information

A list from this table is found in Appendix B.

3.1 DRILL

The DRILL table contains information on the type of drill rigg used and the drilling company. Drilling periods and the borehole length are also included.

GEO_DB .DRILL Drilling information (see record underlined in Appendix B page 1)

Column	Key	Text	Example
IDCODE	*	borehole idcode	KLJ01
SECUP	*	length to section upper limit (m)	0.00
SECLOW	*	length to section lower limit (m)	500.60
START		drill start date (yymmod)	870817
END		drill end date (yymmdd)	871127
COMP		drilling company	LKAB
RIGG		type of drill rigg	DIAMEC 260
COMMENT		comments	
INDAT		data input date to geodatabase	88 0804

IDCODE	a borehole code where each position gives the following information
	1 code for type of drilling
	2-3 area code
	4-5 borehole number
SECUP	drilling started at this borehole length
SECLOW	drilling stopped at this borehole length
START	drilling started at this date
END	drilling stopped at this date
COMP	company performing drilling
RIGG	drill rigg type
COMMENT	additional relevant information
INDAT	date information was loaded to the database

BGDRILLP -- BACKGROUND DRILLING PENETRATION 4

The method BGDRILLP contains information concerning the measurement and data from drill penetration during percussion drilling. This method contains two tables:

Drillhole penetration - Flyleaf page 1 DRILLPF Drill penetration log - Data DRILLPD

DRILLPF 4.1

This table is a flyleaf table to the data table DRILLP. A flyleaf table contains information on the drilling company and drill crew involved. To date no information is stored in this table.

GEO_DB .DRILLPF Drillhole penetration - Flyleaf page 1.

Column	Key	Text	Example
IDCODE DATE COMP CREW RESP REPORT ARCHIVE DATASTO COMMENT SIGN INDAT	*	borehole idcode date of measurement (yymmdd) drilling company drill crew person evaluating measurements reference to report reference to archive data storage comments signature of person responsible for input of data data input date to geodatabase (yymmdd)	
IDCODE		ole code where each position ng information code for type of drilling area code borehole number	on gives the
DATE		measurement	
COMP		company	
CREW RESP	drill cr	rew evaluating data	
REPORT		on report reference	
ARCHIVE		where files are stored	
DATASTO		orage reference hal relevant information	
COMMENT SIGN		e of person responsible fo	or input
INDAT	date inf	formation was loaded to the	data base

4.2 DRILLPD

Drill penetration data from percussion drilling is stored in this table.

GEO_DB .DRILLPD Drill Penetration Log - Data (see record underlined in Appendix C page 1)

IDCODE * borehole idcode HASO1	
SECUP * length along borehole (m) 1.40	
SECLEN section length (m) 0.2	
PTIME penetration time (s) 43	
INDAT data input date to geodatabase (yymmdd) 870915	
IDCODE a borehole code where each position give following information 1 code for type of drilling 2-3 area code 4-5 borehole number	es the
SECUP borehole length from top of casing pipe upper section limit	to
SECLEN section length	
PTIME penetration time, seconds	
INDAT date information was loaded to the data	base

5 BGHOLE -- BACKGROUND BOREHOLE INFORMATION

During the investigation of an area, a series of cored boreholes are drilled. A number of percussion boreholes are also drilled, sometimes as many as 50 in one area. Different types of measurements were performed in the boreholes. The results from these measurements are stored in other tables in other subjects within the database.

The method BGHOLE contains different types of information concerning the boreholes. The method consists of the following tables:

BHNAME Connection between Area code and borehole idcode. Check table for borehole idcode in other tables

BOREHOLE Borehole information

HOLEDIAM Borehole diameter

COREDIAM Borehole core diameter

CASEDIAM Borehole casing diameter

CASETOP Casing above ground

BHCOORD Co-ordinates along borehole BHHIST Events occurred in borehole

A list from each table is found in Appendix D.

5.1 BHNAME

INDAT

This table describes the connection between borehole type, area code and borehole idcode. The table is used as a check table, to prevent data storage under an illegal idcode. To store data from a new borehole into any table within the database, the new borehole idcode must first be loaded into the table BHNAME.

GEO_DB .BHNAME Connection between borehole idcode, area code and borehole type (see record underlined in Appendix D page 1)

Column Key	Text Ex	ample	
IDCODE * AREAC * BHTYPE OIDCODE COM30	Tacade for porchate	s02	
INDAT		0208	
IDCODE	a borehole code where each following information	position gives the	
	1 code for type of dr 2-3 area code	illing	
AREAC	4-5 borehole number	wo letter code	
AREAC	AC The area code is a unique two letter code from the area name.		
BHTYPE			
	type of borehole.		
	B Booster borehole		
	H percussion borehole		
	K cored borehole (dri	.ll nole)	
OIDCODE	if for any reason the idcod changed, the old idcode is	e nas been caved in this	
	field	Savea III eliis	
COM30	additional relevant informa	tion	

date information was loaded to the database

5.2 BOREHOLE

General borehole information is collected in this table. This includes the borehole code, local and RAK co-ordinates, altitude, borehole length and intended orientation.

No local z-co-ordinate is usually used during the field work.

GEO_DB .BOREHOLE Borehole information (see record underlined in Appendix D page 1)

Column	Key	Text	Example
IDCODE	*	idcode for borehole	KAS02
XCOORD		x-co-ordinate (local net) (m)	7261.986
LDIRX		direction for local x - co-ordinate	N
YCOORD		y-co-ordinate (local net) (m)	2125.224
LDIRY		direction for local y - co-ordinate	E
X		RAK x-co-ordinate for borehole	
		(on surface)	
Υ		RAK y-co-ordinate for borehole	
		(on surface)	
Z		altitude above sea level (m)	7.68
RAKDEF		RAK co-ordinate method definition	
		P=definition towards RAK fixpoint	Р
		O=true RAK fixpoint	
		D=definition on topographic map 1:50000	
		E=definition on topographic map 1:20000	
		F=definition on topographic map 1:10000	
		G=definition on topographic map 1:8000	
		H=definition on topographic map 1:4000	
		I=definition on topographic map 1:2000	
ZDEF		RAK co-ordinate method definition	
		P= definition towards RAK fixpoint	Р
		O=true RAK fixpoint	
		D=definition on topographic map 1:50000	
		E=definition on topographic map 1:20000	
		F=definition on topographic map 1:10000	
		G=definition on topographic map 1:8000	
		H=definition on topographic map 1:4000	
		I=definition on topographic map 1:2000	
BHLEN		borehole length (m)	924.04
CASEGRN		length of casing above ground (m)	0.69
SOILLEN		length along borehole of Quaternary	
JOILLEN		layers (Quaternary layers = soil)	0.00
PREDEC		preliminary angle to RAK north	
REDEC		(degree)	330.0
PREINC		preliminary angle from horizontal	
INCINC		plane (degree)	85.0
COM50		comments	
INDAT		data input date to geodatabase	880208
INUAL		data impat date to geodatabase	000000

IDCODE a borehole code where each position gives the following information

code for type of drilling

2-3 area code

4-5 borehole number

XCOORD the north-south co-ordinate in the local grid net. To simplify plotting and calculations co-ordinates south of the origin are taken to be negative.

YCOORD the east-west co-ordinate in the local grid net. To simplify plotting and calculations

	co-ordinates west of the origin are taken to
	be negative.
LDIRX	north (N) or south (S) symbol of the x-co- ordinate.
LDIRY	east (E) or west (W) symbol of the y-co- ordinate.
х	north-south RAK co-ordinate of the fixpoint
Y	east-west RAK co-ordinate of the fixpoint
	altitude above the sea level (m)
Z	defines the origin of the x- and y- co-
RAKDEF	defines the origin of the x and y co
	ordinates. Indirectly, this gives the
	accuracy of the co-ordinates. O is a
	permanent RAK fixpoint with high accuracy, P
	might not have the same accuracy and may also
	disappear.
ZDEF	defines the altitude of the origin above sea
	level.
BHLEN	borehole length (m)
CASEGRN	length of casing above ground (m)
SOILLEN	length along borehole of Quaternary layers
	(Quaternary layers = soil)
PREDEC	intended drill direction in a 360 degree
	clockwise system (degree)
PREINC	intended angle from horizontal plane,
TREING	vertical being 90 degrees
COM50	additional relevant information
INDAT	date information was loaded to the database
TMDWI	date information was roaded to the database

Normally the boreholes are determined geodetically towards the origin of the grid net (0 N / 0 E). Inside a local grid net the accuracy of the local borehole co-ordinates is estimated to be within 5 m.

Borehole RAK co-ordinates may be determined geodetically. In general, they are determined either directly from a map, or calculated from the RAK co-ordinate for the origin of the grid net, the local borehole co-ordinates and the orientation of the grid net. The accuracy of determination of the co-ordinates in either case depends on the scale of the map used, Table 5.1.

Table 5.1 Accuracy of the RAK co-ordinate for the boreholes

~=====================================	
Geotab code	Map scale RAK co-ordinate accuracy (m)
=======================================	
D	1:50 000 100
E	1:20 000 40
F	1:10 000 20
G	1:8 000 16
Н	1:4 000 8
I	1:2 000 4
P	0.01
0	0.01-0.1

5.3 HOLEDIAM

Column

In this table, the diameter for a given section in a borehole is given. Normally the diameter is constant along the entire borehole length, but it may vary in some boreholes.

Example

GEO_DB .HOLEDIAM Borehole diameter (see record underlined in Appendix D page 2)

Key Text

IDCODE SECUP SECLOW HOLDIAM INDAT	<pre>borehole idcode kas02 length to upper limit (m)</pre>
IDCODE	a borehole code where each position gives the following information 1 code for type of drilling 2-3 area code 4-5 borehole number
SECUP	borehole length from top of casing to upper section limit (m)
SECLOW	borehole length from top of casing to lower section limit (m)
HOLDIAM INDAT	borehole diameter (m) date information was loaded to the database

5.4 COREDIAM

Column

INDAT

Key Text

This table contains information on drill core diameter.

Example

GEO_DB .COREDIAM Drill core diameter (see record underlined in Appendix D page 2)

IDCODE SECUP SECLOW COREDIAM COM30	 borehole idcode kAS02 length to upper limit (m) length to lower limit (m) drill core diameter (m) comments 	
INDAT	data input date to geodatabase (yymmdd) 880229	
IDCODE	<pre>a borehole code where each position gives following information 1 code for type of drilling 2-3 area code 4-5 borehole number</pre>	the
SECUP	borehole length from top of casing to uppe section limit (m)	r
SECLOW	borehole length from top of casing to lowe section limit (m)	r
COREDIAM COM30	drill core diameter for this section (m) additional relevant information	

date information was loaded to the database

5.5 CASEDIAM

Column

INDAT

Key

To prevent borehole collapse in the soil layer, an iron casing pipe is inserted into the bedrock during the drilling. In general, only one diameter is used in a borehole, but in some cases several diameters were used.

In the CASEDIAM table, the diameter of the casing pipe is noted.

Example

GEO_DB .CASEDIAM Borehole casing diameter (see record underlined in Appendix D page 2)

Text

COLUMN	key	TEXT	Example
IDCODE	*	borehole idcode	KAS02
SECUP	*	length to upper limit (m)	0.00
SECLOW	*	length to lower limit (m)	1.05
CASEIN		casing inner diameter (m)	0.173
CASEOUT		casing outside diameter (m)	0.197
COM30		comments	
INDAT		data input date to geodatabase	
		(yymmdd)	880303
IDCODE		ole code where each posit	ion gives the
	followi	ng information	
	1	code for type of drilling	na
	2-3	area code	9
	4-5		
SECUP	borehole	e length from top of casi	ng to upper
	section	limit (m)	
SECLOW		e length from top of casi	na to lower
DECEC			9 00 10
		limit (m)	
CASEIN	casing :	inner diameter (m)	
CASEOUT	casing o	outer diameter (m)	
COM30	-	nal relevant information	
	~~~~		

date information was loaded to the database

# 5.6 CASETOP

GEO_DB .CASETOP

This table contains information on casing length above a reference level. This information is of interest when measuring methods are used, which must later be compared with each other and with the geological core mapping and then length corrected. Since the casing pipe is used to attach different types of equipment, its length is sometimes reduced or increased. It is then important to have a fixed reference level and to measure CASEGRN at every measuring event.

Difference from original casetop level

Cotumn	Key	Text	Example
IDCODE	*	borehole idcode	KLJ01
CHDATE		date for change of length of casing above reference level (yymmdd)	871204
ZERODIFF	*	difference from zero level (m), which equals column Z in table BOREHOLE	0.46
COM30 INDAT		comments data input date to geodatabase (yymmdd)	880802
IDCODE		ole code where each position of information code for type of drilling	
	2-3 4-5	area code borehole number	
CHDATE	date of	change of casing length all ee level (yymmdd)	oove
ZERODIFF	differen	ce from zero level (m), which in table BOREHOLE	nich equals
COM30		al relevant information	
INDAT		formation was loaded to the	e database

# 5.7 BHCOORD

This table contains calculated local co-ordinates, vertical depths from the top of a casing and meters above sea level (MASL) for different lengths along the borehole. These values are generated and loaded into the table by a program, using information from the table DEVANGLE (DECLIN and INCLIN) and the table AREA (DIRGRID and DEV). This program is run automatically every night. The accuracy of the values calculated are presented in Table 5.2.

Table 5.2 Estimated accuracy for co-ordinates along the borehole

and Y-co-ordinate Accuracy ference point	
top of casing local grid ON / OE RAK system	1% of borehole length 5 m + 1% of borehole length M + 5 m + 1% of borehole length

M = map dependent, see Table 2.1

When the borehole deviation log is measured, the borehole direction in the vertical plane, inclination, is monitored by a pendulum, while the direction in the horizontal plane is registered by a compass needle. The inclination is given in a 90 degree system, where 0 degrees is horizontal and 90 degrees is vertical. The direction is given in a 360 degree clockwise system.

The deviation log measurements are stored in a table called DEVANGLE. The inclination is in the column INCLIN, while the direction is in the column DECLIN.

Since the direction is measured with a compass needle and the RAK system is not oriented exactly in the magnetic north direction, corrections must be applied in the calculation of co-ordinates from the measurements. The topographic map indicates the following:

RAK angle = compass angle + M - C where M = compass deviation (magnetic north direction - geographic north direction) and C = meridian convergence (RAK north direction - geographic north direction)

From this a new parameter, DEV, is defined:

DEV = M - C (magnetic north direction - RAK north direction)

Using the data in the columns DEV and DIRGRID from the table AREA and INCLIN and DECLIN from the table DEVANGLE, it is now possible to calculate the local coordinates at different vertical depths in the borehole.

Sign conventions are given on page 8.

```
X_i = X_{i-1} + (BHLEN_{i-1} - BHLEN_i) * COS(DECLIN - DEV + DIRGRID) * COS(INCLIN)
Y_i = Y_{i-1} + (BHLEN_{i-1} - BHLEN_i) * SIN(DECLIN - DEV + DIRGRID) * COS(INCLIN)
Z_i = Z_{i-1} + (BHLEN_{i-1} - BHLEN_i) * SIN(INCLIN)
```

GEO_DB .BHCOORD

The same formulae can be used to calculate the RAK coordinates if DIRGRID is excluded.

Co-ordinates Along Borehole (see record underlined in Appendix

-		D page 3)	
Column	Key	Text	Example
IDCODE BHLEN XCOORD YCOORD ZCOORD MASL	*	borehole idcode length along hole x-co-ordinate (local net) y-co-ordinate (local net) vertical depth (m) meters above sea level (m.a.s.l.)	KKM02 10.00 250.371 362.679 8.69
INDAT		data input date to geodatabase (yymmdd)	880525
IDCODE		ole code where each positing information  1 code for type of  2-3 area code  4-5 borehole number	
BHLEN	length a	along borehole from top of	casing
XCOORD	the nort net calc measurem	th-south co-ordinate in th culated from the borehole ments.	e local grid deviation
YCOORD	local gr deviation	culated east-west co-ording id net calculated from the on measurements.	e borehole
ZCOORD	if zero	ted vertical depth for XCO at top of casing, positiv	e downwards
MASL	borehole (positiv	e level above sea level - ve above and negative belo	ZCOORD w sea level)
INDAT	date inf	formation was loaded to th	e database

# 5.8 BHHIST

Events such as the loss of equipment in borehole, blocked borehole etc, can be recorded in this table. So far (September 1988) no data has been loaded into this table.

GEO_DB .BHHIST Events Occurred In Boreholes

Cotumn	Key	Text
IDCODE	*	borehole idcode
DATE	*	date (year, month, day)
TIME LINENO	*	time of day line number
EVENT		event
INDAT		data input date to geodatabase
IDCODE	followi 1 2-3	ole code where each position gives the ng information code for type of drilling area code borehole number
DATE	date of	event
TIME	time of	
LINENO EVENT		mber of the text describing an event e historical event
INDAT	date in	formation was loaded to the database

# 6 BGTABLES -- BACKGROUND NUMBER OF ROWS IN TABLE

This method was created to gather information concerning what data is present in the database. The method consists of one table only. Example of list from this table is found in Appendix E.

# 6.1 ROWTAB

In this table, information on the number of rows (records) in each database table is found. This table must be updated manually and it is seldom up to date.

GEO_DB .ROWTABDescription Of Tables - Number Of Rows In Tables (see record underlined in Appendix F page 1)

Column	Key	Text	Example
TABLE DATE NUMROW RECLEN	*	table name date of notice number of rows record length comment	AREA 871124 39
COM50 INDAT		inputdate of data to geodatabase	871125

TABLE	table name
DATE	date when this table was updated
NUMROW	number of rows (records) in a table
RECLEN	maximum record length in the table
COM50	additional relevant information
INDAT	date information was loaded to the database

# 7 BGTOLR -- BACKGROUND DATA TOLERANCE BACKGROUND TABLE

In a database table the accuracy of the data might depend on how each parameter was measured. The same type of measurement might be made with different instruments or the equipment might have been modified to give higher resolution. Nevertheless, all data in a specific table is stored in the same format. This might give a false picture of the accuracy or sensitivity of different measurements.

The method BGTOLR consists of only one table. A list from this table is found in Appendix F.

# 7.1 TOLR

The measuring sensitivity or accuracy for different data are stored in this table.

GEO_DB .TOLR Tolerances in different columns (see record underlined in Appendix G page 1)

Column	Key	Text	Example
TNAME	*	table name	BOREHOLE
COLNAME	*	columnname	BHLEN
START	*	<pre>start date for valid tolerance and/or sensitivity</pre>	
END		<pre>end date for valid tolerance and/or sensitivity</pre>	
ACCURACY		accuracy	1.00E-01
DIMACC		accuracy dimension	%
SENS		sensitivity	
DIMSENS		sensitivity dimension	
COMMENT		comment	
INDAT		data input date to geodatabase	880412

table name in the database TNAME column name in this table COLNAME accuracy/sensitivity valid from this date START accuracy/sensitivity no longer valid from END this date ACCURACY accuracy of the measuring method stored in this table dimension or unit for accuracy DIMACC sensitivity of the measuring method stored in SENS this table dimension or unit for sensitivity DIMSENS additional relevant information COMMENT

INDAT date information was loaded to the database

# 8 REFERENCES

- Eriksson, E., and Sehlstedt, S., 1989. Description of background data in the SKB database Geotab. SKB TR89-02
- Gentzschein, B., 1986. Description of hydrogeological data in SKB's database Geotab. SKB TR86-22.
- Sehlstedt, S., 1988. Description of geophysical data in the SKB database Geotab. SKB TR88-05.
- Stark, T., 1988. Description of geological data in the SKB database Geotab. SKB TR88-06.

# APPENDIX A:BGAREA

.AREAC,AREAN,MAPNAME,PMAP,XZERO,YZERO,ZZERO,DIRGRID,DEV,RAKDEF, select AREA ZDEF from AREA;

Trom /	AKEA;						
AREAC ZDEF	AREAN	MAPNAME	PMAP	XZERO	YZERO	ZZERO DIRGRID	DEV RAKDEF
40	ÄVPÖ	6H KRÅKELUND 6H KRÅKELUND 6H KRÅKELUND 6H KRÅKELUND	 3A	6366800.000	1552250.000	10.00	-0.8 F
AP	ÄVRÖ	OH KRAKELUND	3A	6367257.000	1553084.000	-42.20	-0.8 F
AS	ÄSPÖ	6H KRÅKELUND	3A	6360253.000	1550813.000	-11.77	-0.8 I
AV	ÄVRÖ	6H KRÅKELUND	3A	6360253.000	1550813.000	-11.77	-0.8 !
BA	BASTULIDEN	22J KALVTRÄSK	2F				
BJ	BJULEBO	22J KALVTRÄSK 6G VIMMERBY	81	6390640.000	1541450.000	42.30	-0.6 F
RM	BRÄMÖN	17H SUNDSVALL	0.1				
BS	BJÖRKSUND	9H NYKÖPING 6H KRÅKELUND	3H				
BU	BUSSVIK	6H KRÅKELUND					
DU	DUNDRET	28K GÄLLIVARE	0B				
DY	LOVISA						
F I	FINNSJÖN	12I ÖSTHAMMAR	<b>9</b> D				-1.0
FJ	FJÄLLVEDEN	9H NYKÖPING	6C	6532940.000	1564830.000	-35.20	-1.6 F
FL	FLAKAÅSEN	18H GRANINGE	1C				
FO	FORSMARK	18H GRANINGE 13I ÖSTERLÖVST	A OG				
FP	SER FORSMARK						
FS	FINNSJÖN	12I ÖSTHAMMAR 23J NORSJÖ	9D		1616500.000	-21.80	-1.0 F
GA	GALLEJAURE	23J NORSJÖ	6E				
GB	GÂVASTRO	121 ÖSTHAMMAR					
GI	GIDEÅ	19J HUSUM 21I FREDRIKA	8C	7044290.000	1662790.000	-3.00	-1.2 F
GR	GRANLIDEN	211 FREDRIKA	2в				
НО	HORNSLANDET	15H HUDIKSVALL					
IM	IMMELN	15H HUDIKSVALL 3E KARLSHAMN 3F KARLSKRONA					
JH	JOHANNISHUS	3F KARLSKRONA	7F				
KA	KARLSHAMN	3E KARLSHAMN	51				
KL	KLIPPERÅS	4F LESSEBO	9н	6297000.000	1488500.000	0.00	0.2 F
KM	KAMLUNGE	25M KALIX	9E	7345320.000	1821340.000	-6.50	1./ F
KR	KRÅKEMÅLA	6G VIMMERBY	4.1	6370000.000	1548000.000	0.00	-U./ F
KY	KYNNEFJÄLL	4F LESSEBO 25M KALIX 6G VIMMERBY 9B DALS-ED	18	6509810.000	1257080.000	23.50	1.1 +
LA	LAVIA						
LJ	LANSJÄRV				4550004 000		
LX	LAXEMAR	6H KRÅKELUND 13I ÖSTERLÖVSTA	3A	6360252.000	1550821.000		
	ÖNSBO	131 OSTERLOVST	A 1D	6705410.000	1618890.000	-6.00	-0.9 F
PE		21K ROBERTSFOR		7145980.000	1745975.000	0.00	-2.2 +
SL		11G VÄSTERÅS	3G				
ST	SALTSJÖTUNNELN						
	STUDSVIK				4/07000 000	25.52	0.7.5
		15F VOXNA	1H	6808160.000	1487280.000	-25.50	-U.5 F
	TAAVINUNNANEN	30K					
YD	OLKILOUTTO						

select AREALIM .AREAC,XCOORD,LDIRX,YCOORD,LDIRY,COM30,INDAT
from AREALIM
where AREAC = 'KM';

AREAC	XCOORD	LDIRX	YCOORD	LDIRY	COM30	INDAT
KM KM	0.000		0.000 2000.000	_		880804 880804
KM KM	2000.000		0.000 2000.000	_		880804 880804

select AREAREF .AREAC, XCOORD, LDIRX, YCOORD, LDIRY, COM30, INDAT from AREAREF

where AREAC = 'KM';

AREAC	XCOORD	LDIRX	YCOORD	LDIRY COM30	INDAT
KM	0.000	N	0.000	E	880804
KM	0.000	N	200.000	E	<b>8</b> 80804
KM	0.000	N	400.000	E	<b>88</b> 0804
KM	0.000	N	600.000	E	<b>88</b> 0804
KM	0.000	N	800.000	E	<b>88</b> 0804
KM	0.000	N	1000.000	E	880804
KM	0.000	N	1174.600	E	880804
KM	0.000	N	1400.000	E	880804
KM	0.000	N	1642,400	E	880804
KM	0.000	N	1800.000	Ε	<b>88</b> 0804
KM	0.000	N	2000.000	E	<b>8808</b> 04
KM	200.000	N	0.000	E	<b>88</b> 0804
CM	200.000	N	1000.000	E	880804
CM	200.000	N	2000.000	Ε	880804
CM.	400.000	N	1000.000	E	<b>8</b> 80804
KM	400.000	N	2000.000	Ε	<b>88</b> 0804
KM	476.800	N	0.000	E	880804
KM	600.000	N	2000.000	E	880804
<b>CM</b>	606.000	N	1000.000	E	880804
(M	648.200	N	0.000	E	<b>88</b> 0804
<b>CM</b>	800.000	N	0.000	Ε	<b>8</b> 80804
CM .	800.000	N	1000.000	E	<b>8808</b> 04
CM .	800.000	N	2000.000	E	<b>8808</b> 04
(M	1000.000	N	0.000	E	880804

select AREAFIXP.AREAC,XCOORD,LDIRX,YCOORD,LDIRY,X,Y,Z,RAKDEF,ZDEF,INDAT from AREAFIXP

where AREAC = 'AS';

APFA	C XCOORD LD	IRX YCOORD LD	 !RY	χ	Υ	 Z	RAKDEF	ZDEF	INDAT
AKEA	(m)	(m)	•			m.a.s.l	•		(yymmdd)
AS	6848.146	N 2079.353	 Е	67380.746	51460.546	2.37	Р	Р	880805
AS	7048.812	N 1194.981	E	68135.991	50398.977	0.58	P	Р	880805
AS	7119.214	N 2505.381	E	67733.327	51822.021	2.13	Ρ	Ρ	880805
AS	7799,968	N 2595.705	Ε	68418.148	51770.997	14.14	P	₽	880805
AS	8113.079	N 2008.557	Ε	68604.360	51132.165	0.90	Р	Ρ	<b>8</b> 80805

# APPENDIX B:BGDRILL

select DRILL .IDCODE, SECUP, SECLOW, START, END, COMP, RIGG from DRILL where IDCODE LIKE '*LJ*';

WITCH C 1	בי בינטטב	AL LU	,			
IDCODE	SECUP (m)	SECLOW (m)	START (yymmdd	) END (yymmdd)	COMP	RIGG
HLJ01	0.00	75.00	870811	870814	TGB	
HLJ02	0.00	83.60	870824	870908	TGB	
HLJ03	0.00	92.00	880117	880120	TGB	
KLJ01	0.00	500.60	870817	871127	LKAB	DIAMEC 260

# APPENDIX C:DRILLP

select DRILLPF 0 rows found

select DRILLPD .IDCODE, BHLEN, PTIME, INDAT

from DRILLPD

where IDCODE = 'HASO1';

IDCODE BHLEN (m) PTIME (s) INDAT (yymmdd)

IDCODE	DUFER (III) LI	IME (S) INDAT (Y)IIIOG)
HASO1	1,40	43 870915
HAS01	1.60	42 870915
HAS01	1.80	43 870915
HAS01	2.00	40 870915
HAS01	2.20	45 870915
HAS01	2.40	47 870915
HAS01	2.60	48 870915
HAS01	2.80	48 870915
HAS01	3.00	49 870915
HAS01	3.20	43 870915
HAS01	3.40	40 870915
HAS01	3.60	42 870915
HAS01	<b>3.8</b> 0	36 870915
HAS01	4.00	35 870915
HAS01	4.20	38 870915
HAS01	4.40	40 870915
HAS01	4.60	32 870915
HAS01	4.80	31 870915
HAS01	5.00	30 870915
HAS01	5.20	30 870915
HAS01	5.40	36 870915
HAS01	5.60	28 870915
HASO1	5.80	30 870915
HAS01	6.00	33 870915
HAS01	6.20	32 870915
HAS01	6.40	34 870915
HASO1	6.60	36 870915
HASO1	6.80	38 870915
HAS01	7.00	40 870915
HASO1	7.20	38 870915
HAS01	7.40	43 870915
HAS01	7.60	39 870915
HAS01	7.80	37 870915
HAS01	8.00	44 870915
HAS01	8.20	33 870915
etc		

# APPENDIX D:BGHOLE

select BHNAME .IDCODE,AREAC,BHTYPE,OIDCODE,COM30,INDAT from BHNAME

where IDCODE LIKE '*AS*';

IDCODE	AREAC	BHTYPE	OIDCODE	COM30	INDAT
HASO1	AS	н			870909
HASO2	AS	H			870909
HASO3	AS	H			870909
1AS04	AS	H			<b>8</b> 70 <b>9</b> 09
HASO5	AS	Н			<b>8</b> 70909
HASO6	AS	Н			<b>870</b> 909
IASO7	AS	Н			<b>8709</b> 09
ASO8	AS	Н			<b>8</b> 80411
IASO9	AS	Н			<b>8</b> 80411
AS10	AS	Н			880411
AS11	AS	Н			880411
IAS12	AS	Н			<b>8</b> 80411
CASO1	AS	K			<b>8802</b> 08
(AS02	AS	K			<b>88</b> 0229
(AS03	AS	K			<b>8802</b> 08
CASO4	AS	K			<b>88</b> 0208

 ${\tt select BOREHOLE.IDCODE, XCOORD, LDIRX, YCOORD, LDIRY, X, Y, Z, RAKDEF, ZDEF, BHLEN, CASEGRN, SOILLEN, PREDEC, PREINC}$ 

from BOREHOLE

where IDCODE LIKE '*AS*';

IDCODE XCOORD LDIRX SOILLEN PREDEC PREI	INC							CASEGRN	
HAS01 7559.557 X 310.0 60.0	2058.460 Y	6368074.000	1551297.000	5.85	Р	Р	100.00	,	
HAS02 7776.932 X 180.0 60.0	1371.199 Y	6368145.000	1550577.000	1.63	P	Р	93.00		
HASO3 7428.483 X 90.0 60.0	1778.998 Y	6367887.000	1551050.000	1.72	P	Ρ	100.00		
HAS04 7189.523 X 180.0 60.0	2057.348 Y	6367709.000	1551369.000	5.75	P	P	100.00		
HAS05 7343.335 X 180.0 60.0	2139.569 Y	6367877.000	1551419.000	5.92	Р	P	100.00		
HAS06 7420.610 X 90.0	2337.806 Y	6367993.000	1551594.000	4.73	P	Ρ	100.00		
HAS07 7555.081 X	2322.802 Y	6368122.000	1551554.000	3.61	P	Р	100.00		
0.0 60.0 HASO8 7613.713 X	1731.070 Y			6.21	Р	₽	125.00	0.30	0.50
HAS09 7770.423 X	1958.065 Y			7.03	Р	P	125.00	0.30	0.10
HAS10 7879.144 X	1711.000 Y			5.91	₽	Р	125.00	0.40	0.10
HAS11 7758.157 X	1553.960 Y			5.10	P	Р	125.00		0.00
HAS12 7697.364 X	1449.506 Y			2.48	Р	P	125.00		
KAS01 7250.110 X	2132.786 Y			8.18	Р	P	101.00		0.00
330.0 85.0 KAS02 7261.986 X	2125.224 Y			7.68	Р	Р	924.04	0.69	0.00
330.0 85.0 KAS03 7758.228 X 85.0	1805.205 Y			8.79	P	Ρ ′	1002.06		
KAS04 7636.826 X 135.0 60.0	1955.060 Y			11.45	Р	P			

select HOLEDIAM.IDCODE, SECUP, SECLOW, HOLDIAM, INDAT from HOLEDIAM

where IDCODE LIKE '*AS*';

IDCODE	SECUP	SECLOW	HOLDIAM	INDAT
HASO1	0.00	100.00	0.115	870909
HASO2	0.00	93.00	0.115	870909
HAS03	0.00	100.00	0.115	870909
HAS04	0.00	100.00	0.115	870909
HASO5	0.00	100.00	0.115	870909
HASO6	0.00	100.00	0.115	870909
HAS07	0.00	100.00	0.115	870909
HASO8	0.00	125.00	0.115	880411
KAS01	0.00	95.85	0.155	880303
KAS01	95.85	101.00	0.056	880303
KAS02	0.00	93.35	0.155	880229
KAS02	93.35	924.04	0.056	880229

select COREDIAM.IDCODE,SECUP,SECLOW,COREDIAM,COM30,INDAT from COREDIAM where IDCODE LIKE '*AS*';

IDCODE	SECUP (m)	SECLOW (m)	COREDIAM (m	) COM30	INDAT
HASO1	0.00	100.00	· <del></del>		870909
HAS02	0.00	93.00			870909
HAS03	0.00	100.00			870909
HAS04	0.00	100.00			870909
HAS05	0.00	100.00			870909
HAS06	0.00	100.00			870909
HAS07	0.00	100.00			870909
KAS01	0.00	101.00	0.04	2	<b>8</b> 80826
KAS02	0.00	924.04	0.04	2	880229
KAS03			0.04	2	<b>88</b> 0826
KAS04			0.04	2	<b>88</b> 0826

select CASEDIAM.IDCODE, SECUP, SECLOW, CASEIN, CASEOUT, COM30, INDAT from CASEDIAM where IDCODE LIKE '*AS*';

IDCODE S	ECUP (m)	SECLOW (m) (	CASEIN (m) CA	SEOUT (m) COM30	INDAT
HASO1	0.00	1.40	0.140		870909
HAS02	0.00	1.60	0.140		870909
HAS03	0.00	1.60	0.140		870909
HASO4	0.00	1.40	0.140		870909
HAS05	0.00	1.40	0.140		<b>87</b> 0909
HAS06	0.00	1.00	0.140		870909
HASO7	0.00	2.00	0.140		870909
KAS01	0.00	1.00	0.173	0.197	880303
KAS02	0.00	1.05	0.173	0.197	880303
KAS04	0.00	100.80	0.128	0.140	<b>8</b> 80506

select CASETOP O rows found

select BHCOORD .IDCODE,BHLEN,XCOORD,ECOORD,ZCOORD,INDAT

from BHCOORD

where IDCODE = 'KKM02';

IDCODE BHLEN (m) XCOORD (m) ECOORD (m) ZCOORD (m) INDAT (yymmdd)

KKM02	10.00	250.371	362.679	8.69 880525
KKM02	20.00	248.741	367.358	17.37 880525
KKM02	30.00	247.010	372.065	<b>26.02 880525</b>
KKM02	40.00	245.109	376.722	34.67 880525
KKM02	50.00	243.372	381.443	<b>43.31 88</b> 0525
KKM02	60.00	241.619	386.206	<b>51.93 88</b> 0525
KKM02	70.00	239.851	391.012	60.52 880525
KKM02	80.00	238.163	395.861	69.10 880525
KKM02	90.00	236.394	400.667	77.69 880525
KKM02	100.00	234.626	405.472	86.28 880525
KKM02	110.00	232.923	410.364	94.83 880525
etc				

select BHHIST O rows found

# APPENDIX E:BGTABLE

select ROWTAB .TABLE,DATE,NUMROW,RECLEN,COM50,INDAT from ROWTAB where TABLE = 'AREA';

TABLE	DATE (yymmdd)	NUMROW RECLEN COM50	INDAT (yymmdd)
AREA AREA AREA	870701 870817 871028	27 27 39	870706 870817 871029
AREA	871124	39	871125

# APPENDIX F:BGTOLR

	NAME, COLNAME, START, END, A	CCURACY, DIMACC, SENS, DIM	SENS, COMMENT, INDAT
from TOLR where TNAME =	'BOREHOLE' ;		
TNAME COLNAME	START (yymmdd) END (yym	mdd) ACCURACY DIMACC	
880412 BOREHOLE CASDIAM		0.00E+00 M	
880412 BOREHOLE CASEGRN 880412		1.00E-01 M	
BOREHOLE CORDIAM 880412		0.00E+00 M	
BOREHOLE HOLDIAM 880412 BOREHOLE LCAS		0.00E+00 M	
880412 BOREHOLE SOILLEN		1.00E-01 M	
880412 BOREHOLE X		1.00E+02 M	
880412 BOREHOLE XCOORD 880412		1.00E+01 M	
BOREHOLE Y 880412		1.00E+02 M	
BOREHOLE YCOORD 880412		1.00E+01 M	
BOREHOLE Z 880412		0.00E+00 M	

# List of SKB reports

# **Annual Reports**

*1977-78* TR 121

KBS Technical Reports 1 - 120

Summaries

Stockholm, May 1979

*1979* TR 79-28

The KBS Annual Report 1979

KBS Technical Reports 79-01 - 79-27

Summaries

Stockholm, March 1980

1980 TR 80-26

The KBS Annual Report 1980

KBS Technical Reports 80-01 - 80-25

Summaries

Stockholm, March 1981

*1981* TR 81-17

The KBS Annual Report 1981

KBS Technical Reports 81-01 - 81-16

Summaries

Stockholm, April 1982

*1982* TR 82-28

The KBS Annual Report 1982

KBS Technical Reports 82-01 - 82-27

Summaries

Stockholm, July 1983

*1983* TR 83-77

The KBS Annual Report 1983

KBS Technical Reports 83-01 - 83-76

Summaries

Stockholm, June 1984

*1984* TR 85-01

**Annual Research and Development** 

Report 1984

Including Summaries of Technical Reports Issued during 1984. (Technical Reports 84-01 – 84-19)

Stockholm, June 1985

1985

TR 85-20

Annual Research and Development Report 1985

Including Summaries of Technical Reports Issued during 1985. (Technical Reports 85-01 – 85-19) Stockholm, May 1986

*1986* TR 86-31

SKB Annual Report 1986

Including Summaries of Technical Reports Issued during 1986

Stockholm, May 1987

*1987* TR 87-33

SKB Annual Report 1987

Including Summaries of Technical Reports Issued during 1987

Stockholm, May 1988

1988

TR 88-32

SKB Annual Report 1988

Including Summaries of Technical Reports Issued during 1988

Stockholm, May 1989

1989

TR 89-40

SKB Annual Report 1989

Including Summaries of Technical Reports Issued

during 1989

Stockholm, May 1990

Technical Reports
List of SKB Technical Reports 1991

TR 91-01

Description of geological data in SKB's database GEOTAB

Version 2

Stefan Sehlstedt, Tomas Stark SGAB, Luleå

JUAD, Luica

January 1991

TR 91-02

Description of geophysical data in SKB database GEOTAB

Version 2

Stefan Sehlstedt SGAB, Luleå January 1991

TR 91-03

1. The application of PIE techniques to the study of the corrosion of spent oxide fuel in deep-rock ground waters

2. Spent fuel degradation

R S Forsyth Studsvik Nuclear January 1991

# TR 91-04 Plutonium solubilities

I Puigdomènech¹, J Bruno²¹Enviromental Services, Studsvik Nuclear, Nyköping, Sweden²MBT Tecnologia Ambiental, CENT, Cerdanyola, Spain
February 1991

TR 91-05

Description of tracer data in the SKB database GEOTAB

SGAB, Luleå

April, 1991