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Abstract 

This report describes a computational scheme for the numerical inversion of 

Laplace transforms in the case when all singularities occur on the real line. 

The determination of the value of the inverse function at a given point t 
proceeds in four major steps: 

• Using the Bromwich inversion formula the inverse is represented as an 

integral over an infinite interval. 

• By means of the trapezoidal rule this integral is written as an infinite 

sum. 

• The sum is converted to a power series. 

• This power series is evaluated using convergence acceleration. 

In order to carry out the last step in an efficient way an aggregation of terms 

is employed to ensure stability and rapid convergence. The truncation error 

decreases exponentially with the number of terms used and this fact may be 

exploited in error estimation and the selection of corresponding parameters 

in the computer programs. If certain general conditions are satisfied, then 

only a finite number of parameters is required to specify a function with a 

preselected accuracy. Thus the values of the inverse transform are calculated 

on a finite grid, and the transform is determined at all other points with 

interpolation. It is described how to construct the grid to guarantee that the 

resulting error does not surpass a bound, defined by the user. An inversion 

routine based on the ideas put forth in this report has been developed for 

use with the PROPER code package. 
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Summary 

The present report consists of three chapters. The first Chapter, Sections 1 
through 5, gives a general description of the computational schemes and the 
principal ideas underlying them. Section 1.1 reminds the reader about some 
basic mathematical properties of the Laplace transform, which are essential 
for the efficient use of Laplace transform inversion methods. We introduce 
Bromwich's formula and mention alternative treatments. Section 1.2 provides 
basic facts about numerical integration over infinite intervals and the third 
Section deals with convergence acceleration. It is pointed out that e. g. 
the € algorithm by Wynn (See e.g. [16]) could be chosen instead of the 
Chebyshev algorithm. In Section 1.3 we also find the tables which are used 
for estimating round-off and truncation errors and which govern the setting 
of certain parameters in the computational schemes. Section 1.4 deals with 
the tabulation of the in1.·erse Laplace transform. It is intended that these 
four Sections should pr0 ,ide all necessary information for inverting Laplace 
transforms, using the codes described in the manual [6]. In Section 1.5 we 
treat illustrative numerical examples. 

Chapter II is devoted to an account for the results from numerical math
ematics, upon which the computational schemes are based. In Section 2.1 
we define convergence speed and introduce the classes of slowly, geometric 
and rapidly converging sequences. In Section 2.2 we discuss the summation 
of rapidly converging sequences in the presence of round-offs, which may 
mask the true convergence behaviour. The influence of round-offs is further 
discussed in Section 2.3 where it is proved that term-by-term summation 
of conditionally convergent series is an unstable process. In Section 2.4 we 
present a simple and general way of deriving linear convergence acceleration 
schemes and in Section 2.5 an important special case is treated. In Section 
2.6 issues about the stability of these schemes are addressed. In this section 
we also describe how aggregation improves the stability and convergence of 
the Chebyshev method. In Section 2.7 we present results about the conver
gence rates of linear acceleration methods, generalising earlier results in [4]. 
Sufficient, fairly general conditions guaranteeing that the transformed series 
has geometric convergence are given. 

We have collected some general results from mathematical analysis in 
Chapter III. In Section 3.1 we give Newton's interpolation formula with re
mainder and in Section 3.2 Cauchy's integral formula. In Section 3.3 we 



discuss the concept of functional recovery and describe how to determine the 
value of a function at any point of the interval under consideration with a 
guaranteed accuracy using expressions involving a known number of param
eters. 
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Chapter 1 

A computational scheme for 
Laplace transform inversion 

1.1 Some general properties of Laplace trans
forms 

Let f be a real-valued function, which is defined for nonnegative arguments 
t. Further, f is required to be continuous and of bounded variation on all 
closed and bounded sub-intervals of [O, oo]. Put 

(1.1.1) 

As known, Fis called the Laplace transform off. It is analytic on subregions 
of the complex plane, provided the integral (1.1.1) converges absolutely for 
some finite z. See Widder, (15]. We note that 

F(z) = F(z), (1.1.2) 

where, as usual, z is the complex conjugate of z. Sometimes we write 

(Cf)(z) = F(z), (1.1.3) 

where Fis defined by (1.1.1 ). We note that (1.1.1) defines a linear mapping, 
1.e. 

.C(f1 + h) = Cf1 + Ch, C(wf) = wCJ, 
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provided the integrals defining the Laplace transforms of the functions f, J1 

and f2 do exist.(w is here an arbitrary complex number). Often a differential 
or integral equation involving a function f may be transformed into a simpler 
relation involving CJ In some important situations, the integral (1.1.1) may 
be solved analytically and sometimes one may also find f when CJ is given 
as an analytic formula. Frequently, however, one must resort to numerical 
methods. To tabulate F in {1.1.1) given f, is generally a non trivial task, 
involving numerical integration over infinite intervals. Here we shall treat 
the at least equally challenging problem of recovering f, given F. This latter 
problem has been treated by many authors. See e.g. [2], [8] and [13]. We 
shall here assume that F is defined by means of a computer program and 
that the evaluation of F at a given z is expensive. Hence it is desirable to 
minimise the number of such evaluations. From the outset we shall require 
that F is analytic everywhere except possibly at points z of the real line 
satisfying 

?R(z) < A, 

where A is a known real number. 
Example 1.1.1 

J(t) = e-t F(z) = 1/(z + 1) :::} A= -1. 

Under the general assumptions on F and f described above, 
the Bromwich inversion formula holds: 

where the line r is given by 

r={zlz=,+iy, -oo<y<oo}, 

(1.1.4) 

(1.1.5) 

(1.1.6) 

(1.1.7) 

and the real constant 1 in ( 1.1. 7) must be such that 1 > A. Thus the line r 
is parallel with the imaginary axis. It is essential that Fis analytic on r and 
the half-plane to the right of r, since otherwise an erroneous value off will 
generally result from the numerical schemes to be described. We transform 
(1.1.6) to an integral involving real arguments as follows. Set 

1 = 10 + 11, (1.1.8) 
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where 11 > 0 and 10 is the real part of the right-most singular point of F. 
Then we get 

etbo+'"rl) loo . 
J(t) = --- e'YtF(,o + 11 + iy) dy. 

271" -oo 

Put next yt = 17 and then again 17 = y. Then we obtain 

eho loo . 
f(t) = -et'r'l e'Y F( ,o + 11 + iy/t) dy. 

21rt -oo 
(1.1.9) 

Here 10, the position of the right-most singular point of F, is a characteristic 
of this function but the parameter , 1 may be chosen. We assume that F may 
be calculated with the same relative accuracy for all arguments. Our task is 

to construct a table off such that f(t) may be determined by interpolation 
in this table and that f ( t) is to be evaluated for a large range oft-values, say 
for t = 10k, k = -6, -5, ... , 6. To illustrate the situation we consider 

1 
F(z)=l+z' (1.1.10) 

As stated in Example 1.1.1, f(t) = e-t and 10 = -1. Hence (1.1.9) becomes 

f(t) = e-t . et'"rl · loo eiy 1 . dy. 
21r -oo ,1 t + iy 

(1.1.11) 

In this particular example, (1.1.11), the integral can be calculated exactly 
with analytic methods but in the general case numerical evaluation must be 
used. Assume that this is done and that the resulting absolute error in the 
calculated value is t(t). Denote the corresponding error in f(t) by 8J(t). 
Then we find 

8f(t) = t(t)e-t. et'"rl. 
271" 

Since in this case f ( t) = e-t, we find the following expression for the relative 
error 

8f(t) E(i) t')']. ----·e f(t) - 271" • 

The last factor increases unboundedly when t -+ oo for each fixed 11 . Ex

ample (1.1.1) also illustrates a general dilemma: small values of 11 make 
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the integration difficult, while the right-most singularity of the integrand lies 
close to the line B and large values of 11 cause the factor e'Y1 t to grow rapidly 
with t. Therefore one may let 11 depend on t and the choice ,1 = 1/t has 
been tested with success on many numerical examples. With this choice of 
, 1 we have t,1 = 1 and (1.1.9) takes the form 

et"YO+l loo . 
f(t) = -- e'11 F(,o + (1 + iy)/t) dy, 

21rt -oo 
(1.1.12) 

and in the special case of Example 1.1.1 

e-t+l Joo . 1 
f(t) = -- · e111 • dy. 

21r -oo 1 + 1,y 
(1.1.13) 

The integral of (1.1.13) is independent of t. We shall demonstrate in Ex
ample 1.5.1 how its numerical evaluation may be carried out using general 
computational schemes. Since the exact value is known, we may study the 
performance of these schemes on this particular example. 

Remark 1.1.1 The line r in (1.1.6) may be replaced by another suitable 
curve. In [14} a particular choice is discussed in great detail. Other ap
proaches to the problem of inverting Laplace transforms may be found in the 
survey paper ([2}). 

1.2 Trapezoidal rule over infinite intervals 

The integral (1.1.9) cannot, in general, be calculated analytically. Instead, a 
numerical method is called for, and it is essential that the calculation scheme 
can be implemented in a computer program, which delivers accurate results 
for the class of functions to be treated. We note, that the range of integration 
is unbounded and that the integrand may decay slowly as is illustrated by 
(1.1.13). Here the integrand is 

. 1 
e'11 G(y), G(y) = .. 

,1t + iy 

Assume, for simplicity that 11 t = 1, as recommended in the end of Section 
1.1. Thus 

1 
G(y) = .. 

1 + iy 
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Thus G(0) = 1 and IG(y)I ~ 10-6 for all IYI ;?: Y, if we choose Y;?: 106 • 

(A lesser value of Y would not do). 
Thus the approach to replace the infinite interval in (1.1.9) and (1.1.11) 

with a bounded range and neglect the contributions from the tails does not 
appear promising. Instead we shall choose a different route. To facilitate the 
argument to follow we rewrite the integral of (1.1.9) in the form 

g(t) = 1-: iYG(y, t) dy, 

with 
G(y, t) = F(,o + ,1 + iy/t). 

Thus G is defined by F and depends on ,o, ,1 and t and 

G(-y, t) = G(y, t). 

(1.2.1) 

We shall also require that the integrand of (1.2.1) and all its derivatives tend 

to O as IYI ---+ oo. 
The integral (1.2.1) is approximated by means of the trapezoidal sum 

00 

Th(t) = h I: einhG(nh, t), (1.2.2) 
n=-oo 

where h is a positive number to be chosen. Thus the integral {1.2.1) has 
been approximated by an infinite series {1.2.2). Very many terms would be 
required to calculate n(t) by approximating the series with a partial sum. 
In many cases, such as (1.1.11) this term by term summation can also be 
shown to be numerically unstable and hence give unpredictable results. In 
the Sections to follow we shall describe how to evaluate the series (1.2.2) 
using convergence acceleration, achieving large gains in speed, accuracy and 
reliability. 

When we replace g(t) with Th(t), we cause an error, which depends on 
the step-size h. Put 

t(h, t) = g(t) -Th(t). 

Using the theory in [12] we may prove: 

l' c(h/2, t) 
h:To c( h, t) = O. 
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This fact justifies the estimate 

ITh(t) - g(t)I ~ ITh(t) - Th;2(t)I. (1.2.3) 

Thus in order to estimate the error in the approximation 

Th(t) ~g(t), 

we need to calculate Th;2. In the absence of round-offs, Th;2 is generally a 
far better approximation for g(t) than is Th(t). However, in actual computa
tions, the limited accuracy of computer calculations determines the accuracy 
obtainable. We propose the following stopping rules: 

Choose an h0 > 0 and put 

hm = 2-mh0 , m = 0, l, · · · ,N. 

A smallest step-size hN is selected to ensure that the calculations always stop 
after a finite time. Next calculate 

Thm(t), m = o, 1, ... , 

where Thm(t) denotes the calculated value of Thm(t). Accept Thm(t) asap
proximation for g( t) for the smallest m < N such that 

(1.2.4) 

If (1.2.4) is not satisfied for any r < N, then ThN(t) is accepted as an ap
proximation for g(t). This strategy has been used with success in numerical 
work. 

Remark 1.2.1 The integml {1.1.1) may also be evaluated using the trape
zoidal rule. It is generally advantageous, first to make the variable transfor
mation 

Then {1.1.1) becomes 

F(z) = 1-: eu-zexpuf(e") du, 

and the trapezoidal rule gives the approximation Fh(z) defined by 
00 

Fh(z) =h. L enh-zexphnf(ehn). 
n=-oo 

The discretisation error depends on the step-size h and this error is estimated 
in the same way as described above for {1.2.1). 
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1.3 Summation of power series with Cheby
shev acceleration 

We now discuss how to evaluate the sum (1.2.2) in an efficient way. Setting 

(1.3.1) 

and using the fact that 

G(-nh, t) = G(nh, t), (1.3.2) 

we immediately find 

Th(t) = h[g(O, t) + 2 · 3?(z · 9(z))], (1.3.3) 

where we have put 
00 

9(z) = L znG((n + l)h, t). (1.3.4) 
n=O 

In our notation 9(z) we have suppressed the dependence on t as indicated 
by (1.3.4). Thus our main task is to evaluate the power series (1.3.4) for 
different values oft and z. In order to get an accurate approximation of the 
integral (1.2.1) by the sum (1.2.2) written as (1.3.3) we need to choose the 
step-size h small. However, the relation (1.3.1) shows, that h -+ 0 implies 
z -+ 1. As discussed in e.g. [4], the problem of calculating the sum of a 
power series from the numerical values of the first few terms becomes less 
stable when z approaches 1. Then most convergence acceleration methods 
give inaccurate results. To counteract this effect an aggregation ( or batching) 
method is used: Let k ;:::: 1 be a fixed integer. Next introduce the k functions 
91, 92, ... , 9k which are defined by 

00 

9r(z) = zr-l L znkG((nk + r)h, t), r = 1, ... , k. 
n=O 

Combining (1.3.4) and (1.3.5) we obtain 

k 

9(z) = L 9r(z). 
r=l 

7 
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We note that 9r is a power series with the argument zk and our aim is 
to select k such that the series is easier to evaluate than 9, which has the 
argument z. Instead of evaluating 1 series with argument z we evaluate k 
series with argument zk. The latter task may be simplified as follows. We 
rewrite (1.3.4) as 

oo k 

Q(z) = I: I: znk+r- 1G((nk + r)h, t), 
n=Or=l 

or 
00 

Q(z) = I: znkan(z), (1.3.7) 
n=O 

where 
k 

an(z) = I: zr-1G((nk + r)h, t). 
r=l 

In our convergence acceleration scheme we treat (1.3. 7) as a power series 
with argument zk and coefficients an(z), disregarding the fact that these 
coefficients depend on the argument z. For linear acceleration schemes like 
those presented in [4] the result of accelerating (1.3.7) is identical to that 
obtained from accelerating each 9r(z) individually and adding the results. 
Also, the nonlinear epsilon algorithm by Wynn, which is described in [16] 
has been used successfully on series of the type of (1.3. 7). We discuss now 
the proper selection of k in (1.3. 7) for the accurate summation of the series 
(1.3.4). As a consequence of our assumptions on F introduced in the text 
before (1.1.4) the theory in [4] is applicable for G and we can state: 

Theorem 1.3.1 Let G in (1.3.4) satisfy the assumptions made above. Then 
the following relations hold: 

where 

IRn(z)I ~ En(z) C, En(z) = c(z)l,\n(z)I, 

IUn(z)I ~ An(z) Dt, 

(1.3.8) 

(1.3.9) 

• Rn ( z) is the truncation error, i. e. the difference between the exact sum 
and the result of performing Chebyshev acceleration, using n terms and 
assuming that the calculations are carried out exactly. 
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• l.,\(z)I is called the error factor. It does not depend on n. 

• The constants C and D depend on the function G but not on z, n or c. 

• The nonnegative function c(z) is independent of n. 

• c is a bound on the absolute error in the terms of {1.3.4}. 

• I Un( z) I is a bound for the error caused by uncertainties in data, i. e. the 
values ,;f the terms. 

• An(z) is z-dependent factor in Un(z). 

Remark 1.3.2 Thus IEn(z)I gives an estimate of the relative error in our 
estimate of the sum in the absence of round-offs, while An(z) measures the 
sensitivity for uncertainty in the input data, that is the terms in {1.3.4). 
We note that the transformed series converges like a geometric series with 
quotient l.,\(z)I. 

Summary of strategies for evaluating the integral of (1.1.9) We need 
to select three parameters namely the step-size h, the number of terms n used 
for convergence acceleration and k, the number of terms in the aggregation 
(1.3.6). This can be done using the Tables 1.3.1 and 1.3.2 in this Section. 
They assume that h is of the form 

7r 
h=-, m=0,1, ... ,4. 2m (1.3.10) 

As pointed out in Section 1.2 we introduce a discretisation error when the 
integral (1.2.1) is approximated by the infinite sum (1.2.2) and this error can 
only be controlled by decreasing h. We recommend using the halving strat
egy described in Section 1.2. Thus for each h we need to evaluate the series 
(1.2.1 ). If we use Chebyshev acceleration, the transformed series converges 
like a geometric series. However, we see from Table 1.3.2 that the influence of 
round-offs not only increases with n, the number of terms transformed, but 
it increases when we make h smaller. We note also that if we use aggregation 
according to (1.3.5) through (1.3.7) we replace the original series with argu
ment z = exp(ih) with another series with argument z = exp(ikh). Hence 
we get a more accurate estimation of the sum but instead of n functional 
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values we need to calculate kn such values. We recommend that k is selected 
such that z = i in the aggregated series. 

Example 1.3.3 Assume that h = 1r /16. The corresponding values of the 
En(z) and An(z) are found in the right-most columns of Tables 1.3.1 and 
1.3.2 Thus if we pick n = 24 we find An(z) = 0.45E + 12, which corresponds 
to a loss of about 12 decimal figures in input data. It does not do much 
good that En(z) = 0. 75E- 06, promising a good estimate, if the calculations 
were carried out with infinite precision. Instead we aggregate, taking k = 8 
and the values in the second columns of the tables apply. If we then choose 
n = 10 we find En(z) = .46E - 06 and An(z) = .14E + 02 indicating a loss 
of a little more than 1 decimal figure in input data. To achieve this we had 
to calculate 8 · 10 functional values. It could be argued that the aggregated 
series (1.3.7) is not the same as the original one but this may be accounted 
for by multiplying the error bounds by k, in this case 8. 
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m=0 m= 1 m=2 m=3 m=4 

n=l .33E + 00 .45E + 00 .68E + 00 .88E + 00 .96E + 00 

n=2 .59E - 01 .94E- 01 .19E + 00 .37E + 00 .63E + 00 

n=3 .l0E - 01 .20E - 01 .60E- 01 .15E + 00 .32E + 00 

n=4 .17E - 02 .44E- 02 .19E-0l .65E - 01 .17E + 00 

n=5 .30E- 03 .96E- 03 .58E - 02 .28E - 01 .92E - 01 

n=6 .51E- 04 .21E- 03 .18E - 02 .12E- 01 .50E- 01 

n=7 .88E- 05 .45E- 04 .56E - 03 .50E- 02 .27E - 01 

n=8 .15E- 05 .98E- 05 .17E - 03 .21E- 02 .14E - 01 

n=9 .26E- 06 .21E- 05 .54E- 04 .89E- 03 .78E-02 

n = 10 .44E- 07 .46E-06 .17E-04 .38E-03 .42E- 02 

n = 11 .76E - 08 .l0E- 06 .52E - 05 .16E- 03 .23E - 02 

n = 12 .13E- 08 .22E-07 .16E - 05 .68E-04 .12E - 02 

n = 13 .22E- 09 .47E - 08 .50E-06 .29E-04 .66E - 03 

n = 14 .38E- l0 .l0E- 08 .16E - 06 .12E- 04 .36E - 03 

n = 15 .66E-11 .22E - 09 .48E-07 .52E-05 .l9E - 03 

n = 16 .llE-11 .48E-10 .l5E - 07 .22E - 05 .l0E - 03 

n = 17 .19E -12 .l0E-10 .46E-08 .94E - 06 .56E - 04 

n = 18 .33E -13 .22E-11 .14E- 08 A0E-06 .30E-04 

n = 19 .57E-14 .49E - 12 .45E- 09 .17E- 06 .l6E - 04 
n = 20 .98E -15 .llE-12 .14E - 09 .72E - 07 .89E-05 

n = 21 .17E-15 .23E-13 .43E -10 .31E- 07 .48E-05 

n = 22 .29E-16 .50E - 14 .13E-10 .l3E- 07 .26E - 05 
n = 23 .49E -17 .llE-14 .42E - 11 .55E- 08 .14E - 05 
n = 24 .85E-18 .23E -15 .13E -11 .23E- 08 .75E - 06 

Table 1.3.1 En(z) in (1.3.8) for h = rr/2m z = expih 
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m =0 m= 1 m=2 m=3 m=4 
n=l .67E + 00 .89E + 00 .14E + 01 .18E + 01 .19E + 01 
n=2 .14E + 01 .18E + 01 .27E + 01 .41E + 01 .60E + 01 
n=3 .2lE + 01 .28E + 01 .49E + 01 .9lE + 01 .l7E + 02 
n=4 .28E + 01 .40E + 01 .79E + 01 .20E + 02 .SOE+ 02 
n=5 .35E + 01 .52E + 01 .l3E + 02 .49E + 02 .l6E + 03 
n=6 .42E + 01 .65E + 01 .21E + 02 .l2E + 03 .49E + 03 
n=7 .49E + 01 .SOE+ 01 .38E + 02 .29E + 03 .l5E + 04 
n=8 .57E + 01 .97E + 01 .66E + 02 .72E + 03 .48E+04 
n=9 .64E + 01 .l2E + 02 .l2E + 03 .l8E + 04 .l5E + 05 

n = 10 .71E + 01 .l4E + 02 .21E + 03 .44E + 04 .48E+05 
n = 11 .78E + 01 .16E + 02 .38E + 03 .llE + 05 .15E + 06 
n = 12 .85E + 01 .19E + 02 .68E + 03 .27E + 05 .47E + 06 
n = 13 .92E + 01 .23E + 02 .12E + 04 .66E + 05 .15E + 07 
n = 14 .99E + 01 .27E + 02 .22E + 04 .16E + 06 .47E+07 
n = 15 .11E+02 .32E + 02 .40E+04 .41E + 06 .l5E + 08 
n = 16 .11E+02 .39E + 02 .72E + 04 .lOE + 07 .46E + 08 
n = 17 .12E + 02 .48E + 02 .l3E + 05 .25E + 07 .15E + 09 
n = 18 .l3E + 02 .59E + 02 .24E + 05 .62E + 07 .46E + 09 
n = 19 .13E + 02 .72E + 02 .43E + 05 .15E + 08 .14E + 10 
n = 20 .14E + 02 .89E + 02 .78E + 05 .38E + 08 .46E + 10 
n = 21 .l5E + 02 .11E+03 .l4E + 06 .93E + 08 .14E + 11 
n = 22 .16E + 02 .l4E + 03 .25E + 06 .23E + 09 .45E + 11 
n = 23 .l6E + 02 .l7E + 03 .46E + 06 .57E+09 .14E + 12 
n = 24 .17E + 02 .2lE + 03 .83E + 06 .l4E + 10 .45E + 12 

Table 1.3.2 An(z) in (1.3.9) for h = 1r/2m z = expih 

1.4 Tabulating the inverse Laplace transform 
In the preceding Sections we have described how to evaluate the inverse 
Laplace transform f at a given point t. However, we want to be able to 
evaluate f for all positive arguments. The idea is to evaluate f at a finite 
number of grid-points, and to determine f at other arguments by means of 
interpolation. In [6) linear interpolation is implemented. We must also have 
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information about the asymptotic behaviour off for large arguments. In 
this Section we shall assume that 

lim J(t) = 0. 
t-+(X) 

(1.4.1) 

If this condition is not satisfied we will require that it is possible to premul
tiply f with a suitable known function w such that the product, 

w(t)f(t), 

satisfies (1.4.1) and replace f by that product in the argument to follow. The 
construction of an approximation for f is done in the following way 

• Select nonnegative numbers a and band a positive integer N such that 
O ~a< b. 

• Determine N grid-points ti, i = 1, ... , N according to 

t i-1 
i=a·q ' 

• Calculate J(ti), for i = 1, ... , N. 

• Define the new function J* by putting: 

f*(t) = J(a), 0 ~ t ~ a, 

j*(t) = f(b), t ~ b. 

For each t E [a, b] we define J*( t) as the result of linear interpolation 
between the two grid-points lying closest to t. 

Example 1.4.1 

J(t) = e-2 t a= 0, b = 8, N = 7. 

Thus 
q=V2. 

We note that J* is a continuous function. The goodness of fit could be 
measured in several different ways. We will choose 

II! - !*II= sup IJ(t) - f*(t)I. 
t>O 

(1.4.2) 
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\Ve note that (1.4.2) gives an upper bound for the pointwise error when f is 
approximated by f*. It is possible to improve the accuracy of the approxi
mation by decreasing a and increasing b and/ or N. The latter entity could 
be increased by replacing N by 2 • N -1 for a and b fixed. Then the old grid
points are retained and new ones are introduced in between. Using the theory 
of linear interpolation it is straight-forward to show that the point-wise inter
polation error is decreased by a factor of about 4. Further, the largest error 
generally occurs in the middle between two interpolation points. Since the 
interpolation error might be quite different in different parts of the interval 
[a, b] local refinements strategies, based on the observations above can be 
developed. (See [6]). 

1.5 Numerical examples 

Here we report the results of some numerical experiments. All calculations 
discussed here were carried out on a computer working with relative accuracy 
2-23 :=:::i 1.2 • 10-1 (single precision). 

Example 1.5.1 We discuss the evaluation of the integral in {1.1.13), namely 

loo eiy 
--.-dy. 

-oo 1 + iy 
(1.5.1) 

Since in this example the integral does not depend on t we write Th for Th(t), 
etc. Thus {1.3.3) becomes 

Th = h[l + 2?.R(z · Q(z)], (1.5.2) 

where 
00 

z = eih, 9(z) = L znG((n + l)h), (1.5.3) 
n=O 

and 
1 

G(nh) = . h 
1 + rn 

Let m be a positive integer and put 

7r 
h = 2m, m = 0, 1, ... , 
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in (1.5.2), (1.5.3). Using these values of h and putting z = e'h the sum 

(1.5.3) was evaluated by means of the Chebyshev acceleration formulce in [4}, 
and applying the stopping rules described there i. e. without the aggregation 

(1.3.5). These rules are analogous to those described in Section 9. The exact 

value of (1.5.1) is 21r/e = 2.3114547. The resulting errors in the calculated 
values are given in the Table 1.5.1 

h = 1r/2m number of error m 
m func. values calculated value 
0 8 .36E + 00 
1 9 .43E - 01 
2 10 .77E- 03 
3 10 .15E- 03 
4 10 .13E- 02 
5 11 .69E- 02 

Table 1.5.1 Results of evaluating (1.5.3) using step-sizes h = 1r /2m without 
aggregation. 

We next report the results of evaluating (1.5.1) using aggregation ac
cording to (1.3.5) such that the argument zk becomes i in (1.3.7) while the 
step-lengths in the original series are the same as in Table 1.5.1. Thus no 
aggregations is possible for h > 1r / 4 in the original series. Hence the two first 
lines in Tables 1.5.1 and 1.5.2 are identical. 

step-size batch- nbr. of terms nbr. of terms error m 
h = 1r/2m length in batched in original calculated 

m k senes senes value 
0 1 8 8 .36E + 00 
1 1 9 9 .43E - 01 
2 2 10 20 .78E - 03 
3 4 12 48 .48E-06 
4 8 11 88 .00E + 00 
5 16 11 176 .24E-06 
6 32 12 384 .72E- 06 

Table 1.5.2 Results of evaluating (1.5.3) using step-sizes h = 1r /2m with 
aggregation. 
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\Ve observe that the aggregation gives better accuracy since it decreases 
the impact of the data-error but that more functional values are required. 
However, G-values are only required in the interval [0, 61r] to determine all 
the terms used in the original series. Therefore one may approximate G 
by a polynomial in this interval and if less functional values are required to 
construct a polynomial approximation which reproduces the G-values with 
full accuracy then computational effort could be saved in this way. This topic 
is further discussed in Section 3.3. 

\Ve next discuss the problem of inverting 

(1.5.4) 

which has the inverse 
J(t) = 1 - e-tt2(1 + t). (1.5.5) 

The relation between f and F may be verified as follows: We have 

1 100 -zt -'Tt dt --= e e . 
T +z 0 

(1.5.6) 

Multiply each side of (1.5.6) by r and then integrate with respect to r over 
[0, 1] and the stated relation follows. If we evaluate F and f for small values 
of z-1 and t respectively, using standard functions a severe loss of accuracy 
occurs. 

t number of calculated) absolute relative 
functional values f(t) error error 

.lE - 03 40 .49996656E + 00 .12E- 06 .24E-06 

.lE - 02 44 .49966669E + 00 .89E- 07 .l8E- 06 

.lE - 01 40 .49667913E + 00 .00E + 00 .00E + 00 

.lE + 00 44 .46788400E + 00 .30E- 07 .64E- 07 

.lE + 01 44 .26424101E + 00 .12E- 06 .45E - 06 

.lE + 02 44 .99950079E - 02 .l9E- 08 .l9E- 06 

.lE + 03 48 .99998186E - 04 .l8E - 08 .l8E- 04 

.lE + 04 48 .99956571E - 06 .43E - 09 .43E - 03 

.lE + 05 48 .99491766E - 08 .51E-10 .51E- 02 

Table 1.5.3 Results of evaluating (1.5.5) using step-size h = 1r/8 with ag
gregation with batch-length 4. 
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Instead, it is better to expand these function in Taylor series, which results 

in power series which are rapidly convergent in the sense of Section 2.1. J(t) 
was determined for t = 1oi, j = -4, -3, ... , 4 using the methods described 

in preceding Sections. Here we take 10 = 0 and 11 = 1/t. The step-size 
h = 1r /8 was taken and aggregation was performed with k = 4 and the 
results in Table 1.5.3 were obtained. We notice that the absolute error never 
is greater than 1.2 • 10-7 but that a certain increase in the relative error 

occurs for t large. This loss of accuracy could be counteracted by working in 
double precision. 

We now discuss how to recover f ( t) for positive arguments using linear 
interpolation from a finite set of grid-points. This recovery cannot be exact, 
but the accuracy will be greater the denser grid one wants to use. A geometric 

grid of the type of Table 1.5.3 is advantageous when one wants to reconstruct 

f over long interval. Then one uses log t as independent variable and proceeds 

as described in Section 1.4. Here we shall discuss how to reconstruct J(t over 
(0, 100) using linear interpolation and accepting an absolute error not greater 
than 10-5 , We split the interval in the parts [O, 1] and (1,100). For the first 
interval we use equi-distant grids, for the second geometrical grids. The same 
step-length and aggregation are used as before. 

Equi-distant grid on [0, 1) 
J was tabulated in the interval (0, 1] with step-length 1/64 = 0.015625 

The corresponding values in the interval (0.75, 1) are shown in Table 1.5.4. 
Using this table we can estimate the interpolation error in the table with step
length 1/32 since the largest interpolation error occurs half-way between grid
points. If we interpolate in the table with h = 1/32 to determine ](63/64) we 
obtain this value by averaging the functional values at t = l and t = 31/32. 
The difference between this average and the tabulated value at t = 63/64 
gives an estimate of the interpolation error in a table with step-size 1/32. 
The interpolation error in the table with spacing 1/64 is about 1/4 of this 
value. By carrying out the corresponding estimates for all arguments of the 
form 

2n -1 
64 , n = l, ... , 32, 

we verify that we may determine f at all points t in [O, 1] with an absolute 

error not greater than 1 · 10-5 by interpolating in a table with spacing 1/64, 
i.e. we recover f with the stated precision in the interval [O, 1] from a grid 
containing 65 points. Part of the calculated table is shown in Table 1.5.4 
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t f(t) 
t f(t) 

.750000 .308193 

.765625 .305209 

.781250 .302259 

.796875 .299342 

.812500 .296457 

.828125 .293605 

.843750 .290784 

.859375 .287994 

.875000 .285236 

.890625 .282508 

.906250 .279811 

.921875 .277143 

.937500 .274505 

.953125 .271896 

.968750 .269316 

.984375 .266764 
1.000000 .264241 

Table 1.5.4 Equi-distant table with spacing 1/64 = 0.015625. Interpolation 
error less than ~ 1 • 10-5 

Geometrically spaced grid on [1,100]. 
f was tabulated at a geometric grid with 129 points, covering the interval 

[0, 1]. Thus the grid-points were given by 

The linear interpolation error is estimated in the same way as for the equi
distant table and can be shown to be not greater than ~ 1 • 10-5 • We note 
that the average distance between grid-points is ~ 0. 78, i.e. the second grid 
is, on the average 50 times more sparse than the first. Some grid-points 
could possible be saved by subdividing the interval [0, 100) in more than 
two sub-intervals and using different discretisation strategies in each of the 
sub-intervals. Savings could also be achieved by using quadratic or cubic 
interpolation instead to recover !-values. 
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t f(t) 
1.000000 .264241 
1.036633 .258434 
1.074608 .252570 
1.113974 .246655 
1.154782 .240695 
1.197085 .234694 
1.240938 .228658 
1.286397 .222592 
1.333521 .216505 

74.989418 .000178 
77.736504 .000165 
80.584221 .000154 
83.536255 .000143 
86.596436 .000133 
89.768715 .000124 
93.057205 .000115 
96.466164 .000107 

100.000000 .000100 

Table 1.5.5 Part of geometrically spaced table with 129 points in [1, 100]. 
Interpolation error less than ~ 1 • 10-5 
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Chapter 2 

Some theoretical results on 
convergence acceleration and 
approximation 

2.1 Some measures of convergence speed of 
series and sequences 

Many computational problems can be reformulated as the task of computing 
limit values. Thus in Section 1.2 we treated the calculation of integrals by 
means of the trapezoidal rule with step-size h and the integral sought is the 
limit value which is obtained when h -+ 0. For each h we needed to evaluate 
an infinite power series. In this chapter we shall discuss various methods 
of calculating limit values and we shall present methods of estimating the 
errors in calculated results. We start by considering the general situation of 
a sequence 

(2.1.1) 

such that 
S = lim Sn, 

n-,.oo 
(2.1.2) 

is defined. Here s1, s2, ... , Sn may be calculated numerically and the effort 
necessary depends on n. Put 
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Thus 
S =Sn+ Rn. (2.1.3) 

We often make the approximation 

(2.1.4) 

Then Rn is the associated truncation error, which is unknown in general. 
Hence we need to derive bounds on Rn using any special properties which 
the sequence s1 , s 2, ••• might be established to possess. It should be borne in 
mind that without any bounds on the truncation error, the estimate Sn does 
not bring any information of the value of s, even if n is large. Associated 
with the sequence (2.1.1) is a series with terms a0 , a1 , ••• where we define 

s0 = 0 and 

Hence 

(2.1.5) 

Note that the sum defining Sn has n terms. We write the series corresponding 
to the sequence (2.1.1), (2.1.2): 

(2.1.6) 

Thus 

(2.1.7) 

If we now put 

then we shall refer to an as the first neglected term. 

Definition 2.1.1 The sequence (2.1.1} and the equivalent series (2.1.6) are 
said to be convergent, if 

lim Rn= 0. 
n-+oo 

The convergence is said to be rapid, if 

1. an+l O 
lffi -- = 

n-+oo an , 
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and the convergence is termed geometric (or exponential inn) if 

1. an+l ~ 
llll -- = q, q 1 0. 

n-oo an 

Otherwise the convergence is said to be slow. 

Remark 2.1.2 We recall the familiar fact that the requirement 

is not sufficient for convergence. This is illustrated by the example 

an= l/n, n = 1,2, ... , 

since in this case we may prove 

I. Sn 
llll -1 - = 1. 

n-oo nn 

This explains why the definition of convergence itself is expressed in terms 
of the remainder Rn while the three classes of convergent series could be 
identified by a condition on the terms an, n = l, 2, ... 

Example 2.1.3 We illustrate the Definition 2.1.1 with the following four 
series: 

an - 1/n!, (2.1.8) 
1 

(2.1.9) an -
(n+1)2 ' 

0.ln 
(2.1.10) an - vnTT' 

an - 0.99n2 • (2.1.11) 

(2.1.8) and (2.1.11} are rapidly convergent, (2.1.10) is geometrically conver
gent with q = 0.l and (2.1.9) is slowly convergent. 

Lemma 2.1.4 Let the series (2.1.6) be rapidly convergent. Then the follow
ing statements follow from Definition 2.1.1: 

I. an 
llll - = 1 

n-+oo R ' n 
(2.1.12) 
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I. Rn+i 0 Im -- = 
n--+oo Rn ' 

(2.1.13) 

There is an N such that 

(2.1.14) 

Remark 2.1.5 If (2.1.6) is a rapidly convergent series, then we may use 
the estimate 

(2.1.15) 

Lemma 2.1.6 Let (2.1.6) be geometrically convergent with quotient q such 
that lql < 1. Then there is an N such that: 

and there is a positive constant C with 

Note that (2.1.17) implies 

log IRnl < log C + n logq, 

(2.1.16) 

(2.1.17) 

(2.1.18) 

where log is the logarithm with basis 10. This means that by geometrical 
convergence the number of correct digits in our estimate (2.1.4) grows linearly 
with n, the number of terms used in forming Sn• For efficient calculation 
of the limit s it is desirable that the series is either rapidly convergent or 
geometrically convergent with q in (2.1.17) not much greater than about 0.5. 
Often a series is transformed to improve its convergence. We shall describe 
several methods for doing so, resulting in large savings in computational 
efforts as well as more accurate estimates. 
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2.2 Numerical summation of rapidly conver
gent series and sequences in the pres
ence of round-offs 

In Definition 2.1.1 we introduced the concept of rapidly converging series 
and sequences and we gave same properties which may be used to determine 
whether an analytically given series or sequence indeed converges rapidly. 
Let (2.1.1) be a rapidly converging sequence and let 

(2.2.i) 

Since we are using a computer working with a finite accuracy, we can gen
erally not expect the calculated sequence (2.2.1) to be rapidly converging in 
the sense of Definition 2.1.1. Instead we use our knowledge about the exact, 
but unavailable sequence (2.1.1) to draw conclusions about our calculated 
values (2.2.1). We illustrate this idea the following simple 

Example 2.2.1 Consider the sequence {2.1.1} with 

S1 = 1, Sn+l = (sn + 7/sn)/2, n = 1,2, ... (2.2.2) 

The corresponding numerical values are listed in Table 2.2.1 

z Si 

1 1.0000000 
2 4.0000000 
3 2.8750000 
4 2.6548913 
5 2.6457670 
6 2.6457512 
7 2.6457512 

Table 2.2.1 The sequence defined in (2.2.2). 
We next consider the series (2.1.11) which can be shown to be rapidly con
vergent. We have namely in this case 

an+l 2n+l -- = 0.99 -+ 0, when n-+ oo. 
an 

We give some numerical results in the following table: 
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n an-1 Sn 

1 1.0000000 1.0000000 
2 .9900000 1.9900000 
3 .9605960 2.9505961 
4 .9135174 3.8641133 
5 .8514579 4.7155714 

10 .4430483 7.7695689 
20 .0265648 9.2900343 
30 .0002134 9.3398037 
38 .0000011 9.3400545 
39 .0000005 9.3400555 
40 .0000002 9.3400555 
41 .0000001 9.3400555 

Table 2.2.1 The sequence defined in (1.2.11) for selected values of n. 
In these two examples the sequence of calculated values converged to a def
inite value in each case, That does not occur always, since it is possible to 
construct sequences where the influence of round-offs increases with n and 
one seeks an estimate such that the combined effect of truncation and round
off errors is minimal. We therefore recommend using a stopping strategy 
modelled on the one described on p. 6, Section 1.2 for using the trapezoidal 
rule over the real line. Here the truncation error decreases rapidly when the 
step-size h is halved successively but the influence of round-offs can be ex
pected to grow moderately when h is decreased. This is probably the most 
important instance of the summation of rapidly convergent series to be dealt 
with in this report. 

2.3 Stability of term by term summation of 
• series 

Convergence acceleration methods are not always used, maybe because the 
corresponding theory may be considered unusual or complicated. For an 
account see e.g. ([1]), ((16]). If super-computers are available it would be 
tempting to estimate the sum by summing the series term by term. We shall 
discuss three examples which illustrate that the apparently simplest is not 
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always the best. We discuss the following three examples 

(-lOY 
r! 

(-lY 
ar - r + l' 

1 
ar - (r+1) 2 ' 

(2.3.1) 

(2.3.2) 

(2.3.3) 

All three series are convergent, the first is even rapidly convergent accord
ing to Definition 2.1.1. The two first series are alternating. We define the 
sequences corresponding to these series according to (2.1.5) Since in these 
examples the true sums are known, we evaluated the differences between the 
partial sums and the true limiting values in the two latter examples. The 
results shown in Tables 2.3.1, 2.3.2 and 2.3.3 emerged. 

n an-I Sn 

1 1.00000 1.00000 
2 -10.00000 -9.00000 

10 -2755.73210 -1413.14470 
11 2755.73210 1342.58740 
12 -2505.21110 -1162.62370 
20 -82.20636 -27.70642 
25 1.61174 .46418 
30 -.01131 -.00291 
35 .00003 -.00005 
36 -.00001 -.00006 
37 .00000 -.00006 
38 .00000 -.00006 

Table 2.3.1 The sequence defined in (2.3.1) for selected values of n. 
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n an Sn+l S - Sn+l 

0 1.0000000 1.0000000 .6449341 
1 .2500000 1.2500000 .3949341 
2 .1111111 1.3611112 .2838229 
3 .0625000 1.4236112 .2213229 
4 .0400000 1.4636111 .1813229 
5 .0277778 1.4913889 .1535451 
6 .0204082 1.5117971 .1331370 
7 .0156250 1.5274221 .1175120 
8 .0123457 1.5397677 .1051663 
9 .0100000 1.5497677 .0951663 

100 .0000980 1.6350820 .0098521 
200 .0000248 1.6399715 .0049626 
300 .0000110 1.6416175 .0033165 
400 .0000062 1.6424432 .0024909 
500 .0000040 1.6429399 .0019941 
600 .0000028 1.6432716 .0016625 
700 .0000020 1.6435084 .0014256 
800 .0000016 1.6436863 .0012478 
900 .0000012 1.6438249 .0011091 

1000 .0000010 1.6439358 .0009983 
1500 .0000004 1.6442682 .0006659 
2000 .0000002 1.6444323 .0005018 
3000 .0000001 1.6445948 .0003393 
4000 .0000001 1.6447140 .0002201 
4500 .0000000 1.6447253 .0002087 

Table 2.3.2 The sequence defined in (2.3.2) for selected values of n. 
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n an Sn+l 8 - Sn+l 

0 1.0000000 1.0000000 -.3068528 
1 -.5000000 .5000000 .1931472 
2 .3333333 .8333334 -.1401862 
3 -.2500000 .5833334 .1098138 
4 .2000000 .7833334 -.0901862 
5 -.1666667 .6166667 .0764805 
6 .1428571 .7595238 -.0663766 
7 -.1250000 .6345238 .0586234 
8 .1111111 .7456349 -.0524877 
9 -.1000000 .6456349 .0475123 

10000 .0001000 .6931917 -.0000445 
20000 .0000500 .6931655 -.0000184 
30000 .0000333 .6931564 -.0000092 
40000 .0000250 .6931525 -.0000053 
50000 .0000200 .6931494 -.0000022 
60000 .0000167 .6931478 -.0000006 
70000 .0000143 .6931464 .0000008 
80000 .0000125 .6931457 .0000015 
90000 .0000111 .6931448 .0000024 

100000 .0000100 .6931441 .0000031 
200000 .0000050 .6931411 .0000061 
400000 .0000025 .6931394 .0000077 
800000 .0000012 .6931385 .0000086 

1000000 .0000010 .6931383 .0000089 

Table 2.3.3 The sequence defined in (2.3.3) for selected values of n. 
The three series (2.3.1),(2.3.2) and (2.3.3) have the sums e-10, ln2 and 1r2 /6 
We note that for large n the calculated partial sums Sn give very poor esti
mates for the true sums. In the case of Table 2.3.1 even the sign is wrong. 
To approximate the error in the calculated sum with the first neglected term 
would be incorrect in all three cases. For (2.3.3) we have 

Since (2.3.1) for n > 10 and (2.3.2) for all n satisfy the conditions of Leibnitz's 
theorem it is correct to estimate the truncation error with the first neglected 
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term, provided the calculations are carried out exactly on exact data. In 
these two cases the influence of round-offs and data-errors in single precision 
(relative accuracy ~ 1.2 • 10-1 ) are significant but for (2.3.3) this source of 
error was not equally significant. If n is large, the accumulated effect of 
round- offs during the addition of many terms could be serious. Modern 
computers often carry out the calculations of sums and scalar products in 
double precision. However, the error which is caused by the fact that the 
terms are represented in a finite precision cannot be eliminated and its effect 
may be significant. To study this phenomenon we need 

Definition 2.3.1 Let the series {2.1.6) be convergent. The convergence is 
said to be absolute, if 

(2.3.4) 
r=O 

Otherwise the series is said to be conditionally convergent. 

Remark 2.3.2 Geometrically and rapidly converying series are absolutely 
convergent. 

Theorem 2.3.3 Term by term summation of a conditionally converyent se
ries is numerically unstable. If the terms are given with a relative error 
~ e then the absolute error in the calculated sum of an absolutely convergent 
series is bounded by 

eM/1s1, 
where s is defined by {2.1.6) and M by {2.3.4). 
Proof. Let ar be the exact value of a term, cir its computer representation. 
Put 

Setting 

we find 

ar = ar + Er, r = 0, 1, ... , with lcrl ~ lei larl, r = 0, 1, ... 

n-1 

Sn= L cir, 
r=O 

n-1 

isn - snl ~ e L larl• 
r=O 

Letting n --+ oo we immediately reach the desired conclusion upon dividing 
the limiting relation by s in the case of an absolutely convergent series. 
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Remark 2.3.4 In the example (2.3.1) we haves= e-10 M = e10 and hence 

Is - sl :5 e · exp(20). 

For (2.3.2) we find 

n-1 

I SNn - s n I :5 e L 1 / ( k + l) ~ e In n, 
r=o 

and hence the influence of the error could grow unboundedly when n is taken 
large. In (2.3.3) we gets= M = 1r2 /6 and hence the influence of data-errors 
is modest. However, the truncation error is significant, close to l/n. 

2.4 Linear transformation based on quadra
ture and interpolation 

Consider the general power series 

00 

F(z) = L CrZr, (2.4.1) 
r=O 

where the function F is defined for those z which are such that the series 
(2.4.1) converges. It is often advantageous to extend the definition of Falso 
to such areas in the complex plane where the series is divergent. We next 
introduce: 

Definition 2.4.1 Let n be a positive integer, 170 (z), ... , 1ln-1(z) n numbers, 
which as indicated may depend on z. We call 

n-1 

Fn(z) = L 17r(z)cr, (2.4.2) 
r=O 

a linear transformation of the power series (2.4- 1). 

It is desirable that Fn ( z) should give an approximation to F( z) and often 
one seeks to construct sequences of transformations F 1(z), F 2 (z), ... such 
that 
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Definition 2.4.2 Associated with the transformation Fn(z) we introduce its 

generating polynomial Qn(z; •) with argument t given by 

n-1 

Qn(z; t) = L TJr(z)tr. (2.4.3) 
r=O 

Sometimes it is easiest to define a linear transformation in terms of its gen
erating polynomial. 

Example 2.4.3 Let w be a real or complex number and consider the poly

nomial 
1 n-l (zt - zw)r --E -- , (2.4.4) 

1 - ZW r=O 1 - ZW 

obtained by expanding (l-tz)-1 in a Taylor series aroundt =wand retaining 

the first n terms. For each w (2.J,.4) is a generating polynomial of a linear 

transformation. We mention the special cases: 

• w = 0: term by term summation 

• w = l: generalised Euler transformation 

• w = 1/2: optimal Taylor acceleration (See [4]) 

Thus if the generating polynomial of a linear transformation is given, one 

may determine the transformation itself by expanding the polynomial in 
power form. Sometimes it is helpful to work with operators to facilitate the 
calculations. We introduce 

Definition 2.4.4 Let c0 , c1 , ... , be a sequence of numbers. We define 

(2.4.5) 

E and .6. are called the shift and difference operators, I the identity operator. 

Remark 2.4.5 We may form powers and polynomials of shift and difference 

operators. They are linear operators and obey familiar laws for multiplication, 
e.g.: 

Em+n =Em. En, 

Em. ,6. = Em+l _ Em. 
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Lemma 2.4.6 Let now the linear transformation (2.4,2) have the generating 
polynomial (2.4,3). Then we may write 

n-1 

.'.Fn(z) = L 17r(z)Ereo = Qn(z;E)co, (2.4.6) 
r=O 

Thus we replace the argument tin the polynomial with the shift operator E. 
Using the laws mentioned above we may now derive the well-known recursion 
formulre associated with the Euler transformation. See e.g. ([4]). We next 
show how to derive rational expressions approximating the sum (2.4.1) by 
fitting linear combinations of geometrical series to this power series. Let 
namely 

f1, t2,,,,, tn, 

be n fixed numbers. Next determine the unique solution 

to the linear system 

Next put 

and set 

We note that 

X1, X2, ••• , Xn, 

n 

LXit;=cr, r=0,1, ... ,n-1. 
i=l 

n 

Cr = Exit;, r = 0,1, ... , 
i=l 

00 

:t(z) = E erzr. 
r=O 

Cr = Cr, r = 0, 1, ... , n - 1. 

(2.4.7) 

(2.4.8) 

(2.4.9) 

We next show that :F(z) can equivalently be expressed either as a rational 
expression with z as variable or as a linear transformation of the power series 
(2.4.1). We find namely 

(2.4.10) 

Next we demonstrate that :F(z) may be expressed as a linear transformation 
of the form (2.4.2). 

32 



Theorem 2.4.7 Lett1 , ••• ,tn be as before and determine 1Jo(z),.,.,1Jn-1(z) 
as the solution of the linear system 

n-1 1 
L11r(z)t;-=---, i=l,2, ... ,n. 
r=O 1 - t,z 

(2.4.11) 

Thus we get from the above 

(2.4.12) 

Remark 2.4.8 We note that we determined the numbers x, by solving a lin
ear system of the same type as that encountered when one seeks to determine 
the weights of a mechanical quadrature rule while 1Jr ( z) were obtained after 
determining an interpolating polynomial. Since these systems are of Vander
monde type they may be treated by using e.g. the codes in {{3}). In order 

to obtain bounds on IF(z) - F((z)I we need to introduce assumptions on the 
coefficients c0 , c1 , .••. This topic is dealt with in Section 2. 7. The derivations 
in the present and the two next sections are valid for any sequence. 

2.5 Convergence acceleration based on three 
term recurrence relations 

In this Section we shall derive formulre for the case when the numbers t, in 
(2.4. 7) are selected as the zeroes of orthogonal polynomials. 

Theorem 2.5.1 Let t1 , ... , tn be the given numbers and put 

n 

Pn(t) = IT(t - t,). (2.5.1) 
i=l 

Set 
Q ( . ) _ Pn(l/z) - Pn(t) 

n z, t - ------. 
(1 - zt)Pn(l/ z) 

(2.5.2) 

Then Qn is a polynomial of degree < n in t and such that 
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Proof: 
The numerator of the right hand side of {2.5.2} is a polynomial of degree n 
in t and has a zero at t = 1/ z. The denominator is a constant multiple of 
the factor 1/z - t. Hence Qn(z; ·) is a polynomial of degree< n as claimed. 
Next Pn(ti) = 0 and therefore 

1 
Qn(z;ti) = l- zt/ i = 1,2, ... ,n, 

as asserted. 

Remark 2.5.2 Combining (2.4.2)! (2.4.12) and (2.5.2} we have 

(2.5.3) 

We now introduce a sequence of polynomials Po, P1, ... such that 

Po(t) = 1, P1(t) = t-0:1, Pn(t) = (t-an)Pn-1(t)-f3nPn-2(t), n = 2, ... , 
(2.5.4) 

where an, f3n are given constants. Next define the polynomial sequence 
Q0(z; ·), Q1 (z; ·), ... from the relation 

Q ( ·t) _ Pn(l/z) - Pn(t) 
n z, - (1 - zt)Pn(l/ z) · 

(2.5.5) 

For the power series (2.4.1) we form the sequence of linear transformations 

Fn(z) = Qn(z; E)co, n = 0, 1, ... (2.5.6) 

We next derive a formula for evaluating (2.5.6) for given series (2.4.1) and 
fixed value of z, by slightly generalising Theorem 1 on p. 62 in ([4]).(Note 
that we also have opposite sign of z in (2.4.1) and all subsequent definitions) 

Theorem 2.5.3 Use the notations of {2.5.4} and {2.5.5).Put 

z-kpn(z-1) - EkPn(E) 
h,n = I - Ez Co, (2.5.7) 

Then we may use the relations above to establish: 

(2.5.8) 
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and h,n obeys the relations 

lo,o = 0, (2.5.9) 

h+1,o = (Ik,o + ck)/ z, k = 0, l,... (2.5.10) 

h,1 = h+1,o - a1h,o k = O, l,... (2.5.11) 

h,n = h+1,n-l - anh,n-1 - /3nh,n-2, k = 0, l, ... , n = 2, 3,(2.5.12) 

Remark 2.5.4 Pn(l/ z) in (2.5.8} is determined using the recurrence (2.5.4) 

while the numbers h,n are evaluated in the order 10,0, 11,0 Io,1 12,0, 11,1, 10,2, 
etc. Computer programs are listed in ({51) for the special case when Pn are 

the so-called shifted Chebyshev polynomials, i.e. CXn = 1/2, n = l, 2, ... , /32 = 
1/8, /3n = 1/16, n = 3, 4, .... 

2.6 Stability of linear convergence accelera

tion schemes 

As we showed in Section 2.4 the result of linear transformation of the power 

series (2.4.1) may be written 

n-1 
Fn(z; E)co = E 1Jr(z)cr. (2.6.1) 

r=O 

Let now Er be the error in the computer representation of Cr where 

then we may bound IUn(z)I, the error due to uncertainty in the numerical 

values of the terms Cr and get the expression 

proving (1.3.9), if we put 
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Thus in order to determine An(z) we only need to determine the sum of the 
absolute values of the coefficients in the operator polynomial Qn(z; · ). This is 
done for the case of shifted Chebyshev polynomials and the results are given 
in Table 1.3.2. We note that the values depend very much on z and that if 
z is close to 1, then the numerical acceleration becomes unstable. This may 
be counter-acted by means of aggregation according to (1.3.5) and (1.3.6). 
Since the absolute values of the terms in the aggregated series is at most 
k times those of the original series we should multiply the bounds in Table 
1.3.2 by k when we use it for estimating the error for an aggregated series. 

2. 7 On the exponential convergence of some 
interpolatory acceleration schemes 

In this Section we will show that several important linear acceleration schemes 
give exponential convergence for the transformed series. Our argument de
pends heavily on the fact that the acceleration schemes are linear, i.e. can be 
written on the form of (2.4.2). The idea is first to show that the acceleration 
method under study converges for a certain test-series, whose terms depend 
on a parameter. Next we show that this test-series generates an entire class 
of series and this fact is used to extend the convergence proof to this class. 

Assume that the terms er of the power series (2.4.1) are continuous and 
differentiable functions of a parameter t. Thus we may write 

00 

F(z; t) = L Cr(t)zr, (2.7.1) 
r=O 

and 

n-1 
Dn(z; t) = F(z; t) - Fn(z; t) = F(z; t) - L 1Jr(z)cr(t). (2.7.2) 

r=O 

Note that the coefficients 1Jr(z) do not depend on the parameter i. The 
relations (2.7.1) and (2.7.2) may be differentiated with respect tot to give 

&F(z; t) _ ~ 1 ( ) r 
f)t - ~er i z, 

r=O 
(2.7.3) 
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and 
88n(z; t) _ BF(z; t) _ ~ ( ) , (t) r 

a - a ~ T/r z er z . 
t t r=O 

(2.7.4) 

Likewise, these relations may be integrated. Let p be continuous over [O, 1] 

and put 

Then we get, upon integrating (2.7.1) and (2.7.2) over [O, 1] 

and 

{1 /1 ( n-1 ) 
lo 8n(z; t)p(t) dt = lo F(z; t) - ?; 1Jr(z)cr(t) p(t) dt. 

Example 2.7.1 Consider the relation 

- 1 - = /1 trdt. 
r + 1 lo 

(2. 7.5) 

(2.7.6) 

(2.7.7) 

(2.7.8) 

Thus if we can determine 8n(z; t) in {2. 7.2) for the geometric test-series 

with er = r we can estimate the error which arises when we use the linear 

transformation in {2. 7.1) on the power series 

00 zr 
E--
r=O r + 1 

This result can immediately be generalised. We may differentiate (2.7.8) k 
times with respect to r to obtain the relation: 

(2.7.9) 

enabling us to extend the error estimate to a wider class of series. If dr in 
(2.7.5) are given analytically as function of r one may sometimes determine 
p. Consider the case when cr(t) = tr. Then (2.7.5) takes the form 

dr = fo 1 r p(t) dt. (2.7.10) 
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Next put t = exp( -u) and we obtain 

dr = fo00 e-u(r+l) p( e-u) du. (2.7.11) 

Now p may, in some favourable cases, be determined from a table of inverse 
Laplace transforms. This approach could be used to find p e.g. for dr = 
1/(1 +r2 ) and the method may be extended to the case when dr is a rational 
and bounded function of r. 

Remark 2. 7.2 {2. 7.5) may be replaced by the Riemann-Stieltjes integral 

dr = fo1 Cr(t)dO"(t), (2.7.12) 

where the integrator O" is of bounded variation on [O, 1 ). The practical use of 
this condition in the case cr(t) = tr is dealt with in ([4}). General criteria 
for verifying {2. 7.12} in this case can be found in {[15}). 

Definition 2.7.3 Power series of the type {2.4,1} such that the coefficients 
dr admit a representation {2. 7.5} or more generally {2. 7.12} wth cr(t) = tr 
are called moment series. 

We shall now study the convergence properties of linear acceleration formulre 
on the power series (2.4.1) when the terms dr admit the representation 

dr = rt fo1 rw(t)dt, f ~ 0,integer, r = 0, 1, .... (2.7.13) 

We therefore introduce test-series with 

Cr = rttr, t fix, f ~ 0 integer. (2. 7.14) 

Lemma 2. 7.4 Put 

(2.7.15) 

oo n-1 

8t,n(z; t) = L rltr zr - L T/r(z )rtr. (2.7.16) 
r=O r=O 

Then 8t,n(z; t) is obtained from the recurrence relation: 

8n,o(z;t) = 8n(z;t), dn,k+i(z;t) = t8:,k(z;t),k = 0,1, ... ,f-1. 

Proof 
Differentiate {2. 7.15} after t and then multiply the relation with t. 

38 



Lemma 2.7.5 Use the notations of Theorem 2.5.1. Using (2.5.1} we verify 
straight-forwardly: 

(2.7.17) 

We also need the following result, which is easily shown by means of Cauchy's 
integral formula: 

Lemma 2.7.6 Let n be a closed and bounded subset of the complex plane 
such that its boundary is a simple closed contour. Let r be a closed simple 
contour in the interior of n and such that the points of r are at a positive 
distance from the boundary of n. Denote by !1* the subset of n which is on 
or at the inside of r. Let further </> be analytic on a set, which contains n 
and be such that there is a constant M with the property 

l</>(z)I ~ M,z En. 

Define the sequence 'I/Jc, £ = 0, l, ... , according to 

Then we may prove 
l'I/Je(z)I ~ BeM, z En*, 

where the constant Be is independent of</>. 

We first treat the test-series (2.7.14) for£= 0. Then we use Lemma 2.7.6 
to extend the validity of the error bounds to general £. Finally we apply 
(2.7.10) to extend the results to a general class of series. "\Ve will treat the 
linear acceleration formulre defined by (2.4.4)(Taylor expansion) and by the 
three-terms recurrence relation formula for shifted Chebyshev polynomials 
(Remark 2.5.4). 

Theorem 2.7.7 Put 
lz(t - wl 

K = max -,-----,-. 
o::;t9 11 - zwl 

If l'C < 1 then (2.4,4} converges exponentially for the test-series (2. 7.14} and 
also for the class of series whose terms satisfy (2. 7.5). 
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Proof. 
Setting ti = w, i = 1, ... , n in the definition of Pn in (2.5.1} we find from 
(2. 7.17) 

Sn(t;z)= 1 (z(t-w))n 
l - zt l - zw 

Thus 
K,n 

ISn(t;z)I:::; I 1. l - zt 

Since K < 1 we may construct an ellipse r with foci at O and l such that 

max lz(t - w)I < v v = (l + K)/2 < 1 
ll - zwl - ' ' 

for all z on r or in its interior. Thus we put 

in Lemma (2. 7. 6) and conclude that 

where A, Be are constants. Thus we have verified exponential convergence 
for the test-series. 

We next verify the exponential convergence for the case of Chebyshev accel
eration. 

Theorem 2.7.8 Letti,i = 1,2, ... ,n in (2.5.1) are the zeroes of the shifted 
Chebyshev polynomials T~. Then the linear transformation formul~ (2.4- 2) 
converges exponentially for the test-series (2. 7.14}. 
Proof 
We find 

S (z t) - T~(t) 
n ' - (1 - tz)T;.(l/ z)' 

where for complex z 

T; ( z) = 1, Tt ( z) = 2z - 1, T~ ( z) = ( 4z - 2) T~_ 1 ( z) - T~_ 2 ( z), n = 2, 2, .... 
(2.7.18) 
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We note that JT;(t)I:::; 1 ift E [0,1]. Further (2.7.18) is a difference equation 

with constant coefficients we find the solution 

(2.7.19) 

(2.7.20) 

Thus ifl/z does not belong to [O, 1] we may conclude the exponential conver

gence for the test-series (2. 7.14) in the case R = 0 from (2. 7.19),(2. 7.20) To 

extend this result to the case R > 0 we consider an ellipse with foci in O and 

l but such that l/ z is outside of the ellipse. Put 

(2.7.21) 

H'hen 0 varies ( describes an ellipse with center at z = 1/2 and semiaxes 

(R+ R-1 )/4 and (R-R- 1 )/4. Using the difference equation (2. 7.18) we find 

and hence we may use Lemma 2. 7. 6 to establish that the Chebyshev acceler

ation gives exponential convergence for moment series. 
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Chapter 3 

Some general results from the 
theory of interpolation 

3.1 Newton's interpolation formula 

One of the main ideas in classical numerical analysis is to approximate func
tions with polynomials and carry out operations like interpolation, differen
tiation and integration on these latters. Much effort has been devoted to 
construction of suitable formulre for doing this as well as estimating the er
rors, hereby arising. In this section we have collected some central results 
and definitions from this area. 

Definition 3.1.1 Let the function </> be defined on a set [!, on the real line 
or in the complex plane. Let D,N C n be a fixed subset containing N points. 
We define the divided differences of</> with respect to nN as follows 

one argument: </>(zi), zi E SN, 

two arguments: 

(3.1.1) 

k arguments By induction: 

,./..( . . ) _ </J(zi2' • • •, Zik) - </>(zi1, • • •, Zik-1) 
'f' zi1,··•,ztk - ------------'-'-, k = 2, ... , zij E nN. 

Zik - Zi1 
(3.1.2) 
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Remark 3.1.2 Using induction one may verify that the value of a divided 
difference with k arguments :' independent of the order of these arguments. 
The definition above requires that the arguments are distinct. However! if 

</> has sufficiently many derivatives it is possible to extend the definition to 
confluent arguments by means of a suitable limiting process! e.g. 

</>( z' z) = 4>' ( z). 

Newton's interpolati(',,1 formula: 

Theorem 3.1.3 Let</> and n be as in Definition 3.1.1 and put 

Then for each n such that 1 ~ n ~ N we have: 

</>(z) = Qn(z) + Rn(z), i ES, 

where Qn is the polynomial of degree less than n which satisfies 

and the remainder Rn has the form 

Proof: 

n 

Rn(z) = </>(z, z1, z2, ... , Zn) IT (z - Zi), 
i=l 

(3.1.3) 

Rn and Qn are constructed! using the definition of divided differences. We 
have namely 

</>(z) = </>(zi) + (z - z1)</>(z, z1 ). 

Thus for n = 1 we have Q1(z) = </>(z1) and R 1(z) = </>(z, z1)(z - z1 ) as 
claimed. To treat the case n = 2 we use: 

Combining this with the preceding relation we obtain 
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Hence for n = 2 we find 

Q2(z) = </>(zi) + (z - z1)</>(z1, z2), R2(z) = </>(z, z1, z2)(z - z1)(z - z2), 

The constructive part is now completed using an induction argument. The 
uniqueness of the interpolating polynomial is verified by using contradiction: 
Let Q* and Q be polynomials of degree less than n and such that 

Q*(zi) = Q(zi) = </>(zi), i = I, 2, ... , n, 

i.e. Q* and Q both solve the interpolation problem. Put 

V(z) = P = Q*(z) - Q(z). 

Then V is a polynomial of degree less than n satisfying 

V(zi)=O, i=l,2, ... ,n. 
This is only possible if V is identically zero, establishing the uniqueness of 
the solution of the interpolation problem. 

We next discuss: 

Example 3.1.4 Put 

Then we have 

1 
</>(z) = --. 

I -zw 

Rn(z) = I TI?-1 (z - Zi) 
1 - zw TI7=1 (1/w - zi) 

If n in Theorem 3.1.3 is a closed and bounded real interval [a, b] and </; has 
n continuous derivatives on n then we may prove 

(3.1.4) 

We note that e is unknown, and in most applications it is not easy to estimate 
the magnitude of high-order derivatives. However, the function in Example 
(3.1.4) occurred in Chapter 2 and we note that an explicit expression for 
Rn(z) is available in this important case. Also, in the next Section we will 
show that the task of estimating the high-order derivative may be avoided if 
we know the value of the function itself on a suitable curve in the complex 
plane. We also note that Rn(z) in (3.1.4) contains a factor which depends 
only on the nodes Zi, In fact, it is possible to show: 

44 



Theorem 3.1.5 Let n in Theorem 3.1.3 be the closed and bounded interval 

[a, b] and let </> have n continuous derivatives there. Then 

IR (t)I < 2 ((b- a))n max l</>(n)(t)! 
n - 4 a~t9 n! ' 

(3.1.5) 

if 
a+ b b - a n - i + 1/2 . 

ti = -2- + -2-0i oi = 1r n , i = 1, 2, ... , n. 

3.2 Cauchy's integral formula with applica
tions 

Definition 3.2.1 The subset r of the complex plane is called a smooth arc 
if 

r = {z(t) = x(t) + iy(t)I t E [a, b]}, 

where x and y are continuously differentiable functions oft on [a, b] and such 
that 

lx'(t)I + IY'(t)I > 0 Vt E [a, b]. 

The arc is called a closed contour if also z(a) = z(b) and otherwise z(t1 ) = 
z(t2 ) implies t1 = t 2 • 

Example 3.2.2 

is the unit circle, and a closed contour 

Example 3.2.3 The closed contour given by 

(3.2.1) 

is an ellipse with cent er at the origin, foci at + 1 and -1 and semi-axes 

1/2(R + 1/ R) and 1/2(R - 1/ R). 

We now state 
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Cauchy's integral formula 

Theorem 3.2.4 Let </; be analytic on a domain n in the complex plane, r 
be a closed contour in S. Then for any z interior to r we have 

q;(z) = ~ J </;(() d(. 
21rz Jr ( - z 

(3.2.2) 

Remark 3.2.5 We note that the values of <p in the interior of r are com
pletely determined from the values on the curve r. Hence {3.2.2) could be 
used for calculating these values. If a smooth parametrisation of the curve is 
given, then the trapezoidal rule will give accurote estimates of </;(z), provided 
z is on some distance from the curve. 

Under the assumptions of Theorem 3.2.4 we may also prove 

<tP\z) = ~ J </>(() d(. 
21ri Jr (( - z)k+ 1 

(3.2.3) 

Hence if we have a bound of the type 

l</>(z)I s; M, z Er. 

we may determine a bound on the values of all derivatives of</> at the in
terior of r. However, these bounds get large, if z is close to the curve r. 
These bounds may be used for estimating the magnitude of the remainder 
term in Newton's interpolation formula. Combining the definition of divided 
differences with (3.2.3) we immediately obtain 

(3.2.4) 

Entering this expression into (3.1.3) we get the following expression for the 
remainder term Rn of Newton's interpolation formula 

R ( ) = _1 J </>(() Pn(z) d( 
nZ 21riJr((-z)Pn(() ' (3.2.5) 

where </> is interpolated at z1 , ••. , Zn and 

n 

Pn(z) = IT (z - Zi)-
i=1 
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We will now show that the interpolation error decreases exponentially in the 

number of nodes if we use the zeroes of Chebyshev polynomials and certain 

general conditions are satisfied. 

Definition 3.2.6 The Chebyshev polynomials T0, Ti, ... , satisfy the recur

rence relation 

To(t)=l, T1(t)=t, Tn(t)=2t•Tn-1(t)-Tn-2(t), n=2,3, ... (3.2.6) 

This relation may be considered as a difference equation with constant coef

ficients. It may be solved for Tn( t) and we may establish that Tn has zeroes 
at 

n - i + 1/2 . 
ti = cos(0i) 0i = 1r----, i = 1,2, ... ,n. 

n 
Straight-forwardly we also verify 

We next state: 

(3.2.7) 

(3.2.8) 

Theorem 3.2.7 Let</> be analytic on and in the interior of the ellipse {3.2.1) 

and assume that l</>(z)I :5 M on this set. Let Qn be the polynomial of degree 

less than n which interpolates </> at the points ti defined in {3.2. 7). Let 

·0 
z = 1/2(( + 1/(), ( = Jioe', 0 E [O, 21r], Ro< R. 

Then there is a constant, C independent of Ro, R, n such that 

l</>(z) - Qn(z)I :5 C(Ro/Rr. 

Proof: Combine {3.2.5} and {3.2.8} 

Remark 3.2.8 The last theorem may be generalised. Let namely <p be ana

lytic in a set! which contains the real interval [a, b] in its interior. Make a 

change of variable and define 'Ip according to 

'lj)( ) _ </> (a+ b b - a ) t - -2-+-2-t . 

If we now interpolate 'Ip at the points (3.2. 7} the preceding theorem guaran

tees that the interpolation error decreases exponentially in n. This fact was 

illustrated by the Chebyshev convergence acceleration schemes discussed in 

Section 2. 7! where </>( t) = 1 / (1 - tz) was interpolated in the interval [O, 1] 
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3.3 Recovery of functional values 

We consider in this final section the general problem of evaluating a function 
with an error which does not surpass a given tolerance. In many situations 
one can show that a fixed function can be reproduced with a prescribed toler
ance using a finite number of parameters. However, the number of parameters 
depend both on the tolerance accepted and the function to be reproduced as 
well as the method chosen for the recovery. We illustrate this with 

Example 3.3.1 Let</> be twice differentiable on [O, 1] and such that l</>"(t)I ~. 
c on [0, 1]. We want to recover</> with piece-wise linear interpolation using N 
functional values. Then the step-size is h = 1/(N - 1) and the interpolation 
error is bounded by 

21 C 
eh 8 = 8( N - 1 )2 . 

In the case </>(t) = e-t we have c = 1 and if we take N = 1200 the func
tion obtained by piecewise linear interpolation cannot be distinguished from 
</>( t) = e-t in single precision. Hence it may replace the given function in 
all numerical work in single precision which does not depend on functional 
values outside of [0, 1]. 

We next discuss an example where the given function is not defined by an 
expression composed of so-called standard functions 

Example 3.3.2 Consider the function 

For each fixed z the power series is rapidly convergent in the sense of Section 
2.1 and if we approximate </> with Qn where 

then we may set 
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Therefore 1 if we consider such z with lzl ~ 1 </> and Qn become indistin

guishable in single or in double precision already for n moderate. Hence 1 

for computational purposes the transcendental function can be replaced by a 

polynomial of moderate degree on the set lzl ~ 1. 

In section 3.2 we described how functions on bounded intervals could be 
replaced by polynomials in such a manner that the approximation error de
creases exponentially in the degree of the approximating polynomial, i.e. in 
the number of parameters used. Finally, we will show how functional re
covery may be used to save computational work in the inversion of Laplace 
transforms: Our task may be formulated as the problem of numerically eval
uating the integral (1.1.9) for real, positive values oft. To do this we need 
values of the function F and as follows from the argument in Section 1.2 
we need only F-values for y > 0. Further we need a table of equi-distant 
values with spacing h. If we had not used convergence acceleration we would 

need to tabulate F over vast y-intervals, but the acceleration methods de
creases this need significantly. Let the number of functional values used be 
N (The number of terms in the aggregated series is generally considerably 
less, but we need functional values to form the original series). Thus we 
need F-values in any-interval of length Nhjt. It is important to realise that 
F-values outside of this interval do not influence the computed value of the 

integral. Referring back to Table 1.3.1 we find that if we take h = 1r, n = 12 

we get En(z) = 0.13 · 10-s while n = 14, h = 1r/2 gives En(z) = 0.10 • 10-8 , 

n = 18, H = 1r/4 gives En(z) = 0.14 · 10-8 • Finally n = 24, h = 1r/8 
implies En(z) = 0.23 · 10-8 • Thus we need F-values in an interval of length 
121r/t to secure that En(z) < 10-8 • Nevertheless, we need many functional 
values if we need to select h small to get a small discretization error when 

we approximate the infinite integral with a trapezoidal sum. Then one can 

use interpolation to construct a simpler function, e.g. a piecewise polynomial 
which approximates F in this y-interval within the working accuracy of the 
computer. This is advantageous, if the evaluation of Fis expensive and the 

construction of the approximating function requires fewer functional evalua
tion than does the calculation of terms used in the convergence acceleration 
scheme. The fact that the result of the computations is independent of the 

F-values outside the interval mentioned here, means that it is essential that 

one has verified mathematically that it is indeed permissible to neglect these 
outside values, i.e. use convergence acceleration. 
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Lists of technical terms and 
mathematical symbols 

The following lists contain some key concepts and terms used in this report, 

as well as mathematical symbols used. For each entry is given a reference to 

the page, sometimes formula number, where it occurs for the first time. It is 
generally defined there. In some cases later occurrences are also given 

Subject index 

Aggregation 7, 9, 15, 16, 17, 36 

Analytic function 1 

Batching 7 

Batch-length 15, 16 

Bromwich inversion formula 2 

Cauchy's integral formula 39, 45, 46 

Chebyshev polynomials 47 

shifted 35 

Closed simple contour 39, 45 

Convergence 22 

absolute, for integrals 1 



absolute, for series 29 

conditional, for series 29 

geometric (exponential) 22, 23, 29, 36, 40, 41 

slow 22 

rapid 21 

Convergence acceleration 5, 7, 8, 9, 25, 47, 49 

Difference equation 41, 4 7 

Discretisation error in piece-wise linear interpolation 18 

Discretisation error in trapezoidal approximation 6,9 

Divided differences 42, 43, 46 

Double precision 17, 29, 49 

Epsilon algorithm by Wynn 8 

Error 

absolute 3, 9, 16, 17, 29 

relative 3, 9, 16, 17, 29 

Error factor 9 

First neglected term 21 

Euler transformation, generalised 31, 32 

Generating polynomial 31, 32 

Geometric series 9 

Grid-points 12, 13, 14, 17 

Grid 17 

11 



equi-distant 17 

geometrically spaced 18 

Halving strategy 9 

Interpolating polynomial 33, 44 

Interpolation error 14, 17, 18, 19, 46, 47 

Interpolatory acceleration 36 

Laplace transform 1 

Leibnitz' theorem 28 

Linear acceleration 8, 36, 38, 39 

Linear combination 32 

Linear interpolation 13, 14, 17, 18, 48 

Linear mapping 1 

Linear transformation 30, 31, 32, 34, 35, 37, 40 

Mechanical quadrature 33 

Moment series 38 

Newton's interpolation formula 43, 46 

Node 44, 46 

Operator 31 

difference 31 

identity 31 

shift 31 

Orthogonal polynomials 33 

lll 



Partial sum 5, 26, 28 

Power series 7, 8, 17, 20, 30, 32, 34, 35, 36, 37, 38, 48 

Recovery, functional 17, 48, 49 

Recurrence relation 35, 38, 39, 47 

Relative accuracy 3 

Remainder term 22, 43, 46 

Riemann-Stieltjes integral 38 

Single precision Relative accuracy 2-23 ~ 1.2 • 10-7 14, 29, 48, 49 

Singular point 3 

Smooth arc 45 

Stable 7 

Stopping rules (strategies) 6, 15, 25 

Taylor acceleration 31 

Taylor expansion 39 

Taylor series 17, 31 

Term by term summation 5, 25, 29, 31 

Test-series 36, 37, 38, 39, 40, 41 

Trapezoidal sum 5, 49 

Truncation error 8, 20, 25, 28, 30 

Unstable 5, 29, 36 

Vandermonde 33 

IV 



Lower case English letters 

a Left end-point of real interval 13 

ar Term in series 20, 21, 22 

an( z) z-dependent coefficient in the aggregated series (1.3. 7) 8 

b Right endpoint of real interval 13 

c(z) Nonnegative function appearing in (1.3.8) 8 

er Coefficients in the general power series (2.4.1) 30 

Cr Coefficients in power series, reconstructed by quadrature 32 

cr(t) Coefficients of the power series (2.7.1), depending on the real variable 
t 36, 37, 38 

dr Coefficients in integrated power series 37 

e Bound for relative error in calculated value of term ar in Theorem 2.3.3 29 

f Real valued function, defined for positive arguments t 1 

J* Approximation to inverse Laplace transform f constructed from data on 
a finite grid 13 

J1 , f2 Real-valued functions 2 

g(t) Integral defined by (1.2.1) 5 

h Step-size for trapezoidal approximation (1.2.2) 5, 7, 8, 9, 14, 15 

ho, h1, .. . , hN Sequence of step-sizes for trapezoidal rule with 

where h0 is a given initial step-size 6 

f Integer 38, 39, 40, 41 

V 



m Integer. After m halvings the step-size in the trapezoidal sum is 2-m ho 
14 

q Quotient defining geometric sequence or terms in geometric series 13, 22 

s Limit of sequence or sum of the corresponding series (2.1.2) (2.1.6) 20, 21 

sn element in sequence (2.1.1) 20 

Sn partial sum in series (2.1.5) 21 

Sn Calculated value of Sn (2.2.1) 24 

u Real variable 6 

t Real-valued variable 

ti points on the real line 13, 32, 33 

w Complex constant (2.4.4) 1, 31, 44 

xi \\!eight in mechanical quadrature rule 

y Real-valued variable 

z Complex-valued variable 

Zi points in the complex plane 42, 42 

Upper case English letters 

A Real constant 40 

An(z) z-dependent factor in Un(z), bound for influence of uncertainties in 
the coefficients of the power series (1.3.4) 8, 10, 12 

Bt. Real constants 39, 40 

C Nonnegative constant in (1.3.8) and in (2.1.17) 8, 23 

D Nonnegative constant in (1.3.8) 8 

Vl 



E Power of 10. Example: 0.75£ - 06 = 0.75 • 10-6 10, 11, 12 

E Shift operator in (2.4.5) 31 

En(z) z-dependent factor of truncation error Rn(z) in (1.3.8) 8, 10, 11, 49 

F Complex-valued function, the Laplace transform off, i.e. F = CJ 1 

Fh(z) Trapezoidal approximation for F(z) 6 

G Complex-valued function, defined in terms of F by 

G(y, t) = F(,o + ,1 + iy/t) 

4, 5 

J Identity operator in (2.4.5) 31 

h,n Number, defined in Theorem 2.5.3 34, 35 

Pn Polynomial of degree exactly n, then zeroes of which are known 33, 46 

Q, Q* Polynomials of degrees < n 44 

Qn Polynomial of degree less then n, defining approximation (2.4.3), (2.5.2) 
31, 33 

R Positive constant 41, 45 

Ro Positive constant 4 7 

Rn Truncation error or remainder term 20 

Th(t) Trapezoidal sum with step-size h (1.2.2) 5 

Thm(t) Calculated value of the trapezoidal sum T(hm(t) 6 

Tn Chebyshev polynomials, defined by the recurrence (3.2.6) 47 

r; Shifted Chebyshev polynomials defined by recurrence (2.7.18) 40, 41 

Un(z) Bound for error caused by uncertainties in the coefficients of (1.3.4) 
8, 9 

V Polynomial of degree< n 44 

Y Real number 5 

Vll 



Upper case calligraphic letters 

:F General power series defined by (2.4.1) 30, 32, 33, 36, 37 

:Fn(z) Linear transformation defined by (2.4.2) 30, 32, 32, 34, 35, 36 

:F(z) Sum of power series with reconstructed coefficients c.,. 32, 33 

9(z) Power series defined by (1.3.4) 7, 8, 14 

9r(z) Power series defined by (1.3.5) 7, 8 

£ Operator for Laplace transformation (1.1.3) 1, 2 

Pn Member of sequence of polynomials defined by (2.5.4) 34, 35 

Lower case Greek letters 

an Coefficients in recurrence (2.5.4) 34, 35 

f3n Coefficients in recurrence (2.5.4) 34, 35 

1 Real constant 2 

,o, ,1 Real constants 2, 3, 4, 5, 17 

8 8f(t) Bound for absolute error in the value of f(t) 3 
item[8n(z; t)] Truncation error for power series (2.7.1) 36, 37, 38, 39, 40 

E Bound for absolute error in coefficients of power series 8, 9, 35 

c( t) Bound for absolute error of calculated integral depending on real vari
able t 3 

c(h, t) Discretisation error caused by trapezoidal approximation (1.2.2) 5 

Er Absolute error in calculated value of term ar in Theorem 2.3.3 29, 35 

( Complex variable 41, 46, 47 

rJ Real variable 3 
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rJr(z) Coefficients in linear transformation formula (2.4.2) They depend on 
the complex variable z 30, 31, 32, 33, 35, 36, 37, 38 

0 Real variable in the interval [0, 21r] 41, 45 

K Bound on convergence rate in Theorem 2.7.7 39 

,\(z) Error factor in (1.3.8). The transformed series converges like a geomet
ric series with quotient ,\( z) 8, 9 

,\ 1 , ,\ 2 Characteristic roots of the difference equation (2.7.19) 40 

µ Complex variable, defined in (2.7.21) 41 

v Bound on convergence factor in Theorem 2.7.7 40 

e Real variable 44 

p Continuous weighting function in (2.7.5) 37, 38 

a Integrator in the Riemann-Stieltjes integral (2.7.12) 38 

T Real variable 16 

</> Function which is defined on sub-sets of the complex plane 39, 42, 43, 44, 
45, 46, 47, 48, 49 

7.pe Functions which are defined on sub-sets of the complex plane 39, 47 

w If the inverse Laplace transform f does not satisfy 

lim J(t) = o, 
t-+oo 

then a function w is determined in Section 1.4 such that w(t)J(t) sat
isfies this condition 13 

IX 



Upper case Greek letters 

r Curve in the complex plane 2, 4, 39, 40, 45, 46 

.6. Difference operator in (2.4.5) 31 

n, n• Subset of the complex plane 39, 42, 43, 44, 46 

nN Subset of the complex plane, consisting of N points 43 

Other symbols 

R Real part of complex number 2, 7 
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